Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 55633 by gunawan last updated on 01/Mar/19

Known set A⊆R not empty,  If Sup A=Inf A, then set A is..

$$\mathrm{Known}\:\mathrm{set}\:{A}\subseteq\mathbb{R}\:\mathrm{not}\:\mathrm{empty}, \\ $$$$\mathrm{If}\:\mathrm{Sup}\:{A}=\mathrm{Inf}\:{A},\:\mathrm{then}\:\mathrm{set}\:{A}\:\mathrm{is}.. \\ $$

Answered by arcana last updated on 18/Jun/19

definition  ∀x∈A, Inf A ≤ x ≤ Sup A  for hip. Inf A= Sup A= x  hence Inf A, Sup A ∉ A ∨ Inf A, Sup A ∈ A  but A≠φ ⇒ #A=1  A is puntual

$$\mathrm{definition} \\ $$$$\forall{x}\in\mathrm{A},\:\mathrm{Inf}\:\mathrm{A}\:\leqslant\:{x}\:\leqslant\:\mathrm{Sup}\:\mathrm{A} \\ $$$$\mathrm{for}\:\mathrm{hip}.\:\mathrm{Inf}\:\mathrm{A}=\:\mathrm{Sup}\:\mathrm{A}=\:{x} \\ $$$$\mathrm{hence}\:\mathrm{Inf}\:\mathrm{A},\:\mathrm{Sup}\:\mathrm{A}\:\notin\:\mathrm{A}\:\vee\:\mathrm{Inf}\:\mathrm{A},\:\mathrm{Sup}\:\mathrm{A}\:\in\:\mathrm{A} \\ $$$$\mathrm{but}\:\mathrm{A}\neq\phi\:\Rightarrow\:#\mathrm{A}=\mathrm{1} \\ $$$$\mathrm{A}\:\mathrm{is}\:\mathrm{puntual} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com