Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 79
Question Number 146110 Answers: 2 Comments: 0
$$\int\frac{\mathrm{x}+\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 146108 Answers: 0 Comments: 0
$$\:{Solve}\:\:{in}\:\mathbb{Z}\left[{X}\right] \\ $$$$\left.\mathrm{1}\right)\:{XP}\:'\:\equiv\:−\mathrm{1}\:{mod}\left({X}^{\mathrm{4}} +\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:{X}^{\mathrm{3}} {P}\:−{P}\:'\:\equiv\:\mathrm{1}−{X}^{\mathrm{2}} \:{mod}\left({X}^{\mathrm{4}} +\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{P}\:^{\mathrm{2}} −{X}^{\mathrm{3}} {P}−{X}^{\mathrm{2}} \:\:\equiv\:\mathrm{0}\:{mod}\left({X}^{\mathrm{2}} +\mathrm{2}\right) \\ $$
Question Number 146131 Answers: 1 Comments: 1
Question Number 146090 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sinh}\left(\mathrm{at}\right)\mathrm{sinh}\left(\mathrm{bt}\right)}{\mathrm{sinh}\left(\mathrm{ct}\right)\mathrm{e}^{\mathrm{tz}} }\mathrm{dt}= \\ $$$$\frac{\mathrm{ab}}{\mathrm{c}\left(\mathrm{z}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} +\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\mathrm{K}}}\frac{−\mathrm{4k}^{\mathrm{2}} \left(\mathrm{k}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \right)\left(\mathrm{k}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)}{\left(\mathrm{2k}+\mathrm{1}\right)\left(\mathrm{z}^{\mathrm{2}} +\left(\mathrm{2k}^{\mathrm{2}} +\mathrm{2k}+\mathrm{1}\right)\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)}\right)} \\ $$
Question Number 146073 Answers: 0 Comments: 0
$${Let}\:{K}\:{be}\:{nonempty}\:\:{corps}\:,\:{K}^{\ast} ={K}−\left\{\mathrm{0}_{{K}} \right\} \\ $$$${Prove}\:{that} \\ $$$$\left.\mathrm{1}\right)\:\underset{{x}\in{K}^{\ast} } {\prod}{x}\:=\:−\mathrm{1} \\ $$$$\left.\mathrm{2}\right){Deduce}\:{that}\: \\ $$$$\:\:{p}\:{is}\:{prime}\:\Leftrightarrow\:\left({p}−\mathrm{1}\right)!\equiv−\mathrm{1}\left[{p}\right] \\ $$
Question Number 146067 Answers: 1 Comments: 0
$${transform}\:{the}\:{cartesian}\:{inyegral}\: \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\:\underset{\mathrm{0}} {\overset{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} {\int}}{e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} \:{dy}\:{dx}\:{into}\:{polar}\:{integral}\: \\ $$$${and}\:{evaluate}\:{it}. \\ $$
Question Number 146062 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:{find}\:\:{values}\:\:{a}\:,\:{b}\:,\:{c}\:\:{such}\:{that}: \\ $$$$\:\:\:\:−\mathrm{1}\leqslant\:{ax}\:^{\mathrm{2}} +{bx}\:+{c}\:\leqslant\:\mathrm{1} \\ $$$$\:\:\:\:\:\:{and}\:\:\frac{\mathrm{6}{b}^{\:\mathrm{2}} +\:\mathrm{8}\:{a}^{\:\mathrm{2}} }{\mathrm{3}}\:{is}\:{Max}... \\ $$
Question Number 146035 Answers: 2 Comments: 0
$${help}\:{me}\:{please} \\ $$$$\int\frac{{ln}\left({x}+\mathrm{1}\right)}{{x}}{dx}=?? \\ $$$$ \\ $$
Question Number 145888 Answers: 1 Comments: 0
Question Number 145828 Answers: 0 Comments: 0
$$\int\frac{\mathrm{1}}{{x}^{\alpha} +{a}}{dx} \\ $$
Question Number 145827 Answers: 2 Comments: 0
$$\mathrm{Use}\:\mathrm{Abel}\:\mathrm{summation}\:\mathrm{to}\:\mathrm{evaluate}\::: \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2n}−\mathrm{1}\right)\centerdot\mathrm{2}^{\mathrm{n}} }=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{ln}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$
Question Number 145779 Answers: 1 Comments: 0
$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\int_{\mathrm{0}} ^{\mathrm{1}} \left({e}^{{t}} +{e}^{−{t}} −\mathrm{2}\right)\frac{{dt}}{\mathrm{1}−{cosx}} \\ $$
Question Number 145777 Answers: 2 Comments: 0
$$\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}{dx} \\ $$
Question Number 145776 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {e}^{{x}} {cosxdx} \\ $$
Question Number 145775 Answers: 2 Comments: 0
$$\int\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{5}}}{dx} \\ $$
Question Number 145745 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}\right)}\mathrm{dx} \\ $$
Question Number 145723 Answers: 1 Comments: 0
Question Number 145722 Answers: 0 Comments: 0
Question Number 145676 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{advanced}\:......{calculus}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{prove}\:{that}:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\:\mathrm{3}} \:\begin{pmatrix}{\:\mathrm{2}{n}}\\{\:\:\:{n}}\end{pmatrix}}\:=\:\frac{\mathrm{2}}{\mathrm{5}}\:\zeta\:\left(\mathrm{3}\:\right) \\ $$$$ \\ $$
Question Number 145671 Answers: 6 Comments: 1
Question Number 145646 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{lenght}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:{y}^{\mathrm{2}} \:=\:\frac{{x}^{\mathrm{3}} }{{a}}\:\mathrm{where}\:{a}\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{for} \\ $$$$\mathrm{0}\leqslant{x}\leqslant\frac{\mathrm{7}{a}}{\mathrm{3}} \\ $$
Question Number 145645 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{{a}} {x}^{−\frac{{x}}{{a}}} {dx} \\ $$
Question Number 145588 Answers: 3 Comments: 0
Question Number 146212 Answers: 1 Comments: 0
$$\mathrm{K}=\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }}\mathrm{dx} \\ $$
Question Number 145636 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctanx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 145635 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{3x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Pg 74 Pg 75 Pg 76 Pg 77 Pg 78 Pg 79 Pg 80 Pg 81 Pg 82 Pg 83
Terms of Service
Privacy Policy
Contact: info@tinkutara.com