Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 77
Question Number 146767 Answers: 1 Comments: 0
$$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}+\mathrm{1}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}}\right)=? \\ $$
Question Number 146756 Answers: 2 Comments: 0
$$ \\ $$$$ \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:{t}^{\mathrm{2}} \:+\:\mathrm{1}\:{dt} \\ $$
Question Number 146752 Answers: 1 Comments: 0
$$ \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:{t}^{\mathrm{2}} +\:\frac{\mathrm{1}}{\mathrm{2}}{t}\:−\mathrm{6}{dx}\:\: \\ $$
Question Number 146736 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\mathrm{1}:\:\:\:\:\mathrm{S}:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{{n}.\mathrm{2}^{\:{n}} }\:=? \\ $$$$\:\:\:\:\:\:\mathrm{2}:\:\:\:\:\mathrm{A}:=\:\Sigma\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{{n}^{\mathrm{2}} .\:\mathrm{2}^{\:{n}} }\:=? \\ $$
Question Number 146735 Answers: 2 Comments: 0
$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{\mathrm{n}}}{\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{2}\right)}=? \\ $$
Question Number 146697 Answers: 0 Comments: 0
$$\forall{t}\geqslant−\mathrm{1},{F}\left({t}\right)=\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{1}+{tcos}^{\mathrm{2}} \varphi}{d}\varphi \\ $$$$\left.\mathrm{1}\right)\:{Show}\:{that}\:\forall{t}\leqslant−\mathrm{1}\:{F}\left({t}\right)=\sqrt{\mathrm{1}+{t}}{F}\left(−\frac{\mathrm{1}}{\mathrm{1}+{t}}\right) \\ $$$$\left.\mathrm{2}\right)\:{show}\:{that}\:{if}\:\mathrm{0}\leqslant{t}_{\mathrm{1}} \:, \\ $$$$\mathrm{0}\leqslant{F}\left({t}_{\mathrm{2}} \right)−{F}\left({t}_{\mathrm{1}} \right)\leqslant\frac{{t}_{\mathrm{2}} −{t}_{\mathrm{1}} }{\mathrm{4}} \\ $$
Question Number 146669 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} \left(\mathrm{a}−\mathrm{e}^{−\mathrm{ix}} \right)^{\mathrm{n}} \left(\mathrm{a}−\mathrm{e}^{\mathrm{ix}} \right)^{\mathrm{n}} \mathrm{cos}\left(\mathrm{nx}\right)\mathrm{dx} \\ $$
Question Number 146619 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{solve}\:::\:\:\:\left(\:{x}\:\in\:\mathbb{R}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\:{x}\:\right]\:=\:\left[\:{x}^{\:\mathrm{2}} −\:{x}\:−\mathrm{6}\:\right] \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{note}::\:\:\:\left[{x}\:\right]\::=\:{max}\:\left\{\:{q}\:\in\:\mathbb{Z}\:\mid\:{q}\:\leqslant\:{x}\:\right\} \\ $$
Question Number 146597 Answers: 5 Comments: 0
$$\:\:\:\:\int\:\frac{\mathrm{cos}\:\mathrm{5x}+\mathrm{cos}\:\mathrm{4x}}{\mathrm{1}−\mathrm{2cos}\:\mathrm{3x}}\:\mathrm{dx}\:=?\: \\ $$$$\:\:\int\:\frac{\sqrt{\mathrm{tan}\:\mathrm{x}}}{\mathrm{sin}\:\mathrm{2x}}\:\mathrm{dx}\:=? \\ $$$$\:\:\int\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}\:\mathrm{sin}\:^{\mathrm{5}} \mathrm{x}}}\:=? \\ $$
Question Number 146584 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:......{nice}\:...\:...\:...\:{calculus}...... \\ $$$$\: \\ $$$$\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{4}} {x}^{\:\mathrm{2}} \:{d}\:\left(\lfloor{x}+\lfloor{x}\:+\lfloor{x}+\lfloor{x}\rfloor\rfloor\rfloor\right)=?\: \\ $$$$ \\ $$
Question Number 146582 Answers: 1 Comments: 0
$$\:\:\:\int\:\mathrm{tan}\:^{\mathrm{4}} \mathrm{x}\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:\mathrm{dx}\:=? \\ $$
Question Number 146577 Answers: 2 Comments: 1
Question Number 146455 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:\:{F}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{{x}} \frac{{t}^{\mathrm{2}} }{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{dt}\: \\ $$$$\:\mathrm{Show}\:\mathrm{that}\:{F}\left({x}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{increasing}\:\mathrm{function} \\ $$
Question Number 146429 Answers: 1 Comments: 1
$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\mathrm{n}\centerdot\mathrm{ln}\frac{\mathrm{2n}+\mathrm{1}}{\mathrm{2n}−\mathrm{1}}−\mathrm{1}\right)=? \\ $$
Question Number 146361 Answers: 2 Comments: 0
$${find}\:\int\frac{\mathrm{1}}{{x}^{{n}} +\mathrm{1}}{dx}\:{for}\:{n}\in{N} \\ $$
Question Number 146307 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{S}_{{n}} \:=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\:\mathrm{1}}{\left.{k}\:\left({k}+\mathrm{2}\right){k}+\mathrm{4}\right)} \\ $$$$\:\:\:\:\:\:\:\:{lim}_{\:{n}\rightarrow\infty} \:\left(\:\:\mathrm{S}_{\:{n}} \:\right)\:=\:? \\ $$
Question Number 146290 Answers: 0 Comments: 5
Question Number 146181 Answers: 4 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\:{n}} \:\left({n}+\mathrm{1}\:\right)\:\left(\:{n}\:+\:\mathrm{2}\:\right)}\:=? \\ $$
Question Number 146155 Answers: 0 Comments: 2
$$ \\ $$$$\:\:\:\:\:\:{lim}_{{n}\rightarrow\infty} \:\left({Arcsin}\left({x}\right)\right)^{\:{n}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\:\:\:\:\:\:{x}\:\in\:?\: \\ $$$$\:\:\:\:\:\:{Q}\::\:{mr}\:{liberty} \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 146147 Answers: 2 Comments: 0
$$\:\Upsilon\:=\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} \:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}\:=? \\ $$
Question Number 146110 Answers: 2 Comments: 0
$$\int\frac{\mathrm{x}+\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 146108 Answers: 0 Comments: 0
$$\:{Solve}\:\:{in}\:\mathbb{Z}\left[{X}\right] \\ $$$$\left.\mathrm{1}\right)\:{XP}\:'\:\equiv\:−\mathrm{1}\:{mod}\left({X}^{\mathrm{4}} +\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:{X}^{\mathrm{3}} {P}\:−{P}\:'\:\equiv\:\mathrm{1}−{X}^{\mathrm{2}} \:{mod}\left({X}^{\mathrm{4}} +\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{P}\:^{\mathrm{2}} −{X}^{\mathrm{3}} {P}−{X}^{\mathrm{2}} \:\:\equiv\:\mathrm{0}\:{mod}\left({X}^{\mathrm{2}} +\mathrm{2}\right) \\ $$
Question Number 146131 Answers: 1 Comments: 1
Question Number 146090 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sinh}\left(\mathrm{at}\right)\mathrm{sinh}\left(\mathrm{bt}\right)}{\mathrm{sinh}\left(\mathrm{ct}\right)\mathrm{e}^{\mathrm{tz}} }\mathrm{dt}= \\ $$$$\frac{\mathrm{ab}}{\mathrm{c}\left(\mathrm{z}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} +\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\mathrm{K}}}\frac{−\mathrm{4k}^{\mathrm{2}} \left(\mathrm{k}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \right)\left(\mathrm{k}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)}{\left(\mathrm{2k}+\mathrm{1}\right)\left(\mathrm{z}^{\mathrm{2}} +\left(\mathrm{2k}^{\mathrm{2}} +\mathrm{2k}+\mathrm{1}\right)\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)}\right)} \\ $$
Question Number 146073 Answers: 0 Comments: 0
$${Let}\:{K}\:{be}\:{nonempty}\:\:{corps}\:,\:{K}^{\ast} ={K}−\left\{\mathrm{0}_{{K}} \right\} \\ $$$${Prove}\:{that} \\ $$$$\left.\mathrm{1}\right)\:\underset{{x}\in{K}^{\ast} } {\prod}{x}\:=\:−\mathrm{1} \\ $$$$\left.\mathrm{2}\right){Deduce}\:{that}\: \\ $$$$\:\:{p}\:{is}\:{prime}\:\Leftrightarrow\:\left({p}−\mathrm{1}\right)!\equiv−\mathrm{1}\left[{p}\right] \\ $$
Question Number 146067 Answers: 1 Comments: 0
$${transform}\:{the}\:{cartesian}\:{inyegral}\: \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\:\underset{\mathrm{0}} {\overset{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} {\int}}{e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} \:{dy}\:{dx}\:{into}\:{polar}\:{integral}\: \\ $$$${and}\:{evaluate}\:{it}. \\ $$
Pg 72 Pg 73 Pg 74 Pg 75 Pg 76 Pg 77 Pg 78 Pg 79 Pg 80 Pg 81
Terms of Service
Privacy Policy
Contact: info@tinkutara.com