Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 77
Question Number 140634 Answers: 0 Comments: 0
$${find}\:\int_{−\infty} ^{+\infty} \:\frac{{cos}\left(\mathrm{2}{sinx}\right)}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 140635 Answers: 1 Comments: 0
$${find}\:\:\int_{−\infty} ^{+\infty} \:\frac{{sin}\left(\mathrm{2}{cosx}\right)}{\left({x}^{\mathrm{2}} \:−{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 140615 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{common}\: \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{12x}\:\mathrm{and} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\:\mathrm{24x}\:. \\ $$
Question Number 140614 Answers: 2 Comments: 0
$$\int\:_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{ln}\:\left(\mathrm{sin}\:\mathrm{x}\right)\:\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}\:\mathrm{dx}\:=?\: \\ $$$$ \\ $$
Question Number 140588 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.......{Advanced}\:....\bigstar\bigstar\bigstar....{Calculus}....... \\ $$$$\:\:\:\:\:\:\:\:{evaluation}\:{the}\:{value}\:{of}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}\::=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} \left({x}\right).{ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:{solution}:: \\ $$$$\:\:\:\:\:\:\:\xi\:\left({a}\right):=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}+{a}} \left({x}\right){dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\beta\:\left(\frac{\mathrm{3}+{a}}{\mathrm{2}}\:,\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\Gamma\left(\frac{\mathrm{3}+{a}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{2}+\frac{{a}}{\mathrm{2}}\right)}\right).......\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\:\xi\:'\:\left(\mathrm{0}\right)\:..............\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{2}}\:\sqrt{\pi}\:\frac{\:\Gamma'\left(\frac{\mathrm{3}+{a}}{\mathrm{2}}\right).\Gamma\left(\mathrm{2}+\frac{{a}}{\mathrm{2}}\right)−\Gamma\left(\frac{\mathrm{3}+{a}}{\mathrm{2}}\right).\Gamma'\left(\mathrm{2}+\frac{{a}}{\mathrm{2}}\right)}{\Gamma^{\mathrm{2}} \left(\mathrm{2}+\frac{{a}}{\mathrm{2}}\right)}\:\mid_{{a}=\mathrm{0}} \\ $$$$\:\:\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\pi}\:\:\frac{\Gamma'\left(\frac{\mathrm{3}}{\mathrm{2}}\right)−\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right).\Gamma'\left(\mathrm{2}\right)}{\left(\:\Gamma^{\mathrm{2}} \left(\mathrm{2}\right):=\mathrm{1}\:\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\pi}\:\frac{\psi\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)−\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right).\psi\left(\mathrm{2}\right)}{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\::=\:\frac{\sqrt{\pi}}{\mathrm{4}}\left\{\:\left(\mathrm{2}−\gamma−\mathrm{2}{ln}\left(\mathrm{2}\right)−\left(\mathrm{1}−\gamma\right)\right\}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\::=\frac{\sqrt{\pi}}{\mathrm{4}}\left(\mathrm{1}−{ln}\left(\mathrm{4}\right)\right)=\sqrt{\pi}\:{ln}\left(\sqrt[{\mathrm{4}}]{\frac{{e}}{\mathrm{4}}}\right) \\ $$
Question Number 140554 Answers: 0 Comments: 5
$${What}'{s}\:{the}\:{relationship}\:{between}\:{Dirichlet}\:\beta\left({s}\right)\:{function}\:{with} \\ $$$$\zeta\left({s}\right)\:{function}\:?\:{That}\:{is}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{s}} }\:\:{with}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{{s}} }. \\ $$
Question Number 140500 Answers: 0 Comments: 0
$$\mathrm{tan}\:^{\mathrm{2}} \mathrm{1}°+\mathrm{tan}\:^{\mathrm{2}} \mathrm{2}°+\mathrm{tan}\:^{\mathrm{2}} \mathrm{3}°+...+\mathrm{tan}\:^{\mathrm{2}} \mathrm{89}°=\frac{\mathrm{15931}}{\mathrm{3}}\:\:\:\:\:??? \\ $$
Question Number 140490 Answers: 1 Comments: 1
Question Number 140447 Answers: 1 Comments: 0
Question Number 140405 Answers: 1 Comments: 0
$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:{find}\:\:{the}\:\:{value}\:{of}\::: \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\Theta\::=\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}{n}.\left(\mathrm{4}{n}+\mathrm{1}\right).\left(\mathrm{4}{n}+\mathrm{2}\right).\left(\mathrm{4}{n}+\mathrm{3}\right)}=? \\ $$$$\:\:\:\:\: \\ $$
Question Number 140401 Answers: 2 Comments: 0
$$\:\:\: \\ $$$$\:\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\Phi:=\int_{\mathrm{0}} ^{\:\infty} {xe}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} {ln}\left({x}\right){dx}\:=\:{m}.\left(\:\pi\:\gamma\right) \\ $$$$\:\:\:\:\:\:{find}\:\:\:''\:\:{m}\:\:''\:...... \\ $$$$ \\ $$
Question Number 140399 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\xi}\::=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{e}^{−{x}^{\mathrm{2}} } −{e}^{−{x}} }{{x}}\:{dx}\:=\:{k}.\gamma\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{find}\:\:''\:{k}\:\:''\:... \\ $$$$\:\:\:\:\:\:\:\:\:\:\gamma\::=\:\mathscr{E}{uler}\:{constant}.... \\ $$
Question Number 140388 Answers: 3 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ln}\:\mathrm{x}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{5}} }\:\mathrm{dx}\: \\ $$
Question Number 140353 Answers: 0 Comments: 1
Question Number 140350 Answers: 0 Comments: 0
Question Number 140334 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:{calculate}\::: \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\xi}\::=\:\int_{−\infty} ^{\:\infty} {ln}\left(\mathrm{2}−\mathrm{2}{cos}\left({x}^{\mathrm{2}} \right)\right){dx}=? \\ $$$$ \\ $$
Question Number 140330 Answers: 2 Comments: 0
$${Find}\:{the}\:{Integration}\:{Value}: \\ $$$$\mathrm{1} \:\int\frac{\sqrt{{x}}{d}\left({x}\right)}{\mathrm{1}+^{\mathrm{3}} \sqrt{{x}}}=? \\ $$$$\mathrm{2} \int\frac{{dx}}{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} −{x}^{\frac{\mathrm{1}}{\mathrm{4}}} }=? \\ $$
Question Number 140310 Answers: 2 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{dx}\:=\:\mathrm{0} \\ $$
Question Number 140282 Answers: 0 Comments: 0
$$\underset{{k}=\mathrm{0}} {\overset{{p}−\mathrm{1}} {\sum}}\begin{pmatrix}{{p}}\\{{k}}\end{pmatrix}\mathrm{sin}\:\left[\mathrm{2}\left({p}−{k}\right){x}\right]=? \\ $$$$\begin{pmatrix}{{p}}\\{\mathrm{0}}\end{pmatrix}\mathrm{sin}\:\left(\mathrm{2}{px}\right)+\begin{pmatrix}{{p}}\\{\mathrm{1}}\end{pmatrix}\mathrm{sin}\:\left[\left(\mathrm{2}{p}−\mathrm{2}\right){x}\right]+\begin{pmatrix}{{p}}\\{\mathrm{2}}\end{pmatrix}\mathrm{sin}\:\left[\left(\mathrm{2}{p}−\mathrm{4}\right){x}\right]+...+\begin{pmatrix}{\:\:\:{p}}\\{{p}−\mathrm{1}}\end{pmatrix}\mathrm{sin}\:\left(\mathrm{2}{x}\right)=\mathrm{2}^{{p}} \centerdot\mathrm{cos}\:^{{p}} \left({x}\right)\centerdot\mathrm{sin}\:\left({px}\right)\:\:\:\:\:??? \\ $$$${or}\:\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{cos}\:^{{p}} \left({x}\right)\centerdot\mathrm{sin}\:\left({px}\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\mathrm{2}^{−{p}} \right)\:\:\:\:\:{why}\:??? \\ $$
Question Number 140278 Answers: 0 Comments: 0
$$\int\sqrt{{x}\:\frac{}{}} \\ $$
Question Number 140221 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{2}} \left[{ln}\left(\mathrm{1}+{e}^{{x}} \right)−{x}\right]{dx}=\frac{\mathrm{7}\pi^{\mathrm{4}} }{\mathrm{360}} \\ $$
Question Number 140202 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \left(\frac{{lnx}}{{x}−\mathrm{1}}\right)^{\mathrm{2}} {dx}=\frac{\mathrm{2}}{\mathrm{3}}\pi^{\mathrm{2}} \\ $$
Question Number 140200 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\infty} \left(\frac{{lnx}}{{x}−\mathrm{1}}\right)^{\mathrm{3}} {dx}=\pi^{\mathrm{2}} \\ $$
Question Number 140194 Answers: 1 Comments: 0
$$\:\: \\ $$$$\:\:\:{please}\:\:{integrate}:: \\ $$$$\:\:\:\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\frac{\mathrm{1}}{{z}}{log}\left(\frac{{z}^{\mathrm{2}} +\mathrm{2}{zcos}\left({x}\right)+\mathrm{1}}{\left({z}+\mathrm{1}\right)^{\mathrm{2}} }\right)\right\}{dz} \\ $$$$ \\ $$
Question Number 140191 Answers: 0 Comments: 0
$$\int\mathrm{3}{x} \\ $$
Question Number 140148 Answers: 1 Comments: 0
Pg 72 Pg 73 Pg 74 Pg 75 Pg 76 Pg 77 Pg 78 Pg 79 Pg 80 Pg 81
Terms of Service
Privacy Policy
Contact: info@tinkutara.com