Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 77
Question Number 142116 Answers: 2 Comments: 0
$${use}\:{trigonometric}\:{substitution}\:{to}\:{solve} \\ $$$$\int\frac{{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }}{dx} \\ $$
Question Number 142060 Answers: 2 Comments: 0
Question Number 142028 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:............{Calculus}.........\: \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({sin}\left({x}\right)\right).{e}^{{cos}\left({x}\right)} }{{x}}{dx}=??? \\ $$$$\:............{m}.{n}..... \\ $$
Question Number 142103 Answers: 2 Comments: 0
$$\int_{−\infty} ^{\infty} \frac{{tan}^{−\mathrm{1}} \left(\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}{dx} \\ $$
Question Number 141998 Answers: 2 Comments: 0
$$\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{sin}\:\left(\mathrm{40}{x}\right)}{\mathrm{sin}\:\left(\mathrm{5}{x}\right)}\:{dx}\: \\ $$
Question Number 141946 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:....{nice}\:\:\:{calculus}... \\ $$$$\:\:\:\:{lim}_{{n}\rightarrow\infty} {n}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}}\right)^{{n}} =??? \\ $$
Question Number 141944 Answers: 4 Comments: 0
$$\int{x}^{\mathrm{2}} \sqrt{\mathrm{9}{x}^{\mathrm{2}} +\mathrm{25}}{dx} \\ $$
Question Number 141943 Answers: 2 Comments: 0
$$\int\frac{{dx}}{{x}\sqrt{\mathrm{16}−\mathrm{4}{x}^{\mathrm{2}} }} \\ $$
Question Number 141931 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{2x}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\mathrm{3x}} \right)\mathrm{dx} \\ $$
Question Number 141930 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\left(\mathrm{x}^{\mathrm{3}} \:+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\right)} \mathrm{dx} \\ $$
Question Number 141929 Answers: 1 Comments: 0
$$\mathrm{find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{e}^{−\left(\mathrm{t}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }\right)} \mathrm{dt} \\ $$
Question Number 141868 Answers: 1 Comments: 1
$$\:\:\:\:\:\:\:\:\:\:\:\:......\mathscr{A}{dvanced}\:\:.....\mathscr{C}{alculus}........ \\ $$$$\:\:\:\:\:\:\:\:\:.....\:\:\int_{\:\mathbb{R}} ^{\:} \frac{{e}^{−{x}^{\mathrm{2}} } }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}=? \\ $$$$\:\:\:\:\: \\ $$
Question Number 141859 Answers: 2 Comments: 1
$$\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{4}{e}^{−{x}^{\mathrm{2}} } }{\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:{dx}\: \\ $$
Question Number 141848 Answers: 4 Comments: 0
$$\:\mathscr{I}\:=\:\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }−\mathrm{1}}\:{dx}\: \\ $$
Question Number 141847 Answers: 2 Comments: 0
$$\:\mathcal{I}\:=\:\int\:\frac{\mathrm{sec}\:{x}}{\mathrm{1}+\mathrm{csc}\:{x}}\:{dx}\: \\ $$
Question Number 142255 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{x}^{\mathrm{4}} −\mathrm{5x}^{\mathrm{2}} +\mathrm{4}}\:\mathrm{dx}? \\ $$$$\mathrm{solution}\:\mathrm{please}. \\ $$
Question Number 142256 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}^{\mathrm{1}−{a}} }{dx} \\ $$
Question Number 141811 Answers: 1 Comments: 0
$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\Theta:=\left(\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{n}^{\mathrm{4}} }{\mathrm{2}^{{n}} \:.\:{n}!}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =? \\ $$
Question Number 141757 Answers: 0 Comments: 1
$$\Gamma\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}\centerdot\Gamma\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{2}^{\mathrm{2n}} \Gamma\left(\mathrm{n}+\mathrm{1}\right)} \\ $$
Question Number 141755 Answers: 0 Comments: 0
Question Number 141719 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{dx}=? \\ $$
Question Number 141713 Answers: 1 Comments: 0
Question Number 141691 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....{Calculus}\left({I}\right).... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\int_{\frac{\mathrm{1}}{\mathrm{2}\:}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{{x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\frac{\mathrm{3}}{\mathrm{4}}} }{dx}=??? \\ $$
Question Number 141685 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:......{nice}\:...\:...\:...\:{calculus}..... \\ $$$$\:\:\mathrm{I}{f}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{tan}\left({x}\right)}{{x}}\:=\:\mathrm{1}\:,\:{prove}\:{that}: \\ $$$$\:\:\:\:\:\:\:\:{lim}\frac{\mathrm{1}}{{x}}\left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{tan}\left({x}\right)}\right)=\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Question Number 143167 Answers: 2 Comments: 0
$$\int\boldsymbol{{arctan}}\left(\sqrt{\sqrt{\boldsymbol{{x}}}+\mathrm{1}}\right)\boldsymbol{{dx}}=??? \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{propose}}'\:\boldsymbol{{par}}\:\boldsymbol{{Rodrigue}} \\ $$
Question Number 141649 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:.......{advanced}\:\:{calculus}...... \\ $$$$\:\:\:\:{prove}\:\:{that}−:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\phi:=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{cos}\left(\mathrm{2}\pi{x}^{\mathrm{2}} \right)}{{cosh}^{\mathrm{2}} \left(\pi{x}\right)}{dx}=\frac{\mathrm{1}}{\mathrm{4}}\:\:\checkmark \\ $$
Pg 72 Pg 73 Pg 74 Pg 75 Pg 76 Pg 77 Pg 78 Pg 79 Pg 80 Pg 81
Terms of Service
Privacy Policy
Contact: info@tinkutara.com