Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 59
Question Number 154142 Answers: 2 Comments: 0
Question Number 154080 Answers: 1 Comments: 0
$$\:\:\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:^{\mathrm{2}} \left(\frac{\mathrm{1}+\mathrm{sin}\:{t}}{\mathrm{1}−\mathrm{sin}\:{t}}\right){dt} \\ $$
Question Number 154062 Answers: 0 Comments: 0
Question Number 154038 Answers: 0 Comments: 1
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{monster}\:\mathrm{integral} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left({x}^{\mathrm{3}} \right)\:{dx} \\ $$$$\: \\ $$$$\: \\ $$
Question Number 154037 Answers: 0 Comments: 0
$$\mathrm{Prove}::\:\:\:\underset{\mathrm{n}=−\infty} {\overset{+\infty} {\sum}}\mathrm{arctan}\:\left(\frac{\mathrm{sinh}\:\mathrm{x}}{\mathrm{cosh}\:\mathrm{n}}\right)=\pi\mathrm{x} \\ $$
Question Number 153949 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left({x}^{\mathrm{3}} \right){dx} \\ $$$$\: \\ $$
Question Number 153946 Answers: 0 Comments: 0
$$\: \\ $$$$\:\:\mathrm{show}\:\mathrm{whether} \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left(\sqrt{{x}}\right){dx} \\ $$$$\:\:\mathrm{is}\:\mathrm{solvable} \\ $$$$\: \\ $$
Question Number 153893 Answers: 0 Comments: 0
$$\int_{\:\mathrm{0}} ^{\:\:\infty} \mathrm{a}\:\underset{\mathrm{p}\:\rightarrow\:\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{\mathrm{p}^{\mathrm{2}} \:\:−\:\:\:\mathrm{x}^{\mathrm{2n}} }{\mathrm{p}^{\mathrm{2}} }\right)\mathrm{dx},\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:<\:\:\mathrm{2n}\:\:<\:\:\mathrm{n}\:\:+\:\:\mathrm{1} \\ $$
Question Number 153875 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\mathrm{Prove}\:\:\mathrm{that}.. \\ $$$$\:\:\: \\ $$$$\:\:\:\:\boldsymbol{\phi}\::\:=\int_{\:\mathrm{1}} ^{\:+\infty} \frac{\:{ln}\:\left({x}\:\right)}{\left(\:{x}^{\:\pi} \:−\mathrm{1}\:\right)\left(\:{ln}^{\:\mathrm{2}} \left({x}\right)\:+\mathrm{1}\:\right)^{\mathrm{2}} }{dx}=\:\frac{\pi^{\:\mathrm{2}} −\:\mathrm{8}}{\mathrm{16}}\:\:\:\:\:\:\:\:\:\blacksquare\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\: \\ $$
Question Number 153873 Answers: 0 Comments: 1
$$ \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \frac{\:{x}}{\left(\mathrm{1}\:+{x}^{\:\mathrm{2}} \right)\:\left(\:{e}^{\:\mathrm{2}\pi{x}} −\:\mathrm{1}\right)}\:{dx}\:=\frac{\mathrm{2}\gamma−\:\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$
Question Number 153759 Answers: 0 Comments: 0
$$ \\ $$$$\Omega=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{{n}^{\mathrm{2}} \left(\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{sin}^{\:\mathrm{2}} \left({x}\:\right)}{\left({sin}\left({x}\right)+{cos}\left({x}\right)\right)^{\:\mathrm{4}} }\right)^{\:{n}} {dx}\right\}=? \\ $$$$ \\ $$
Question Number 153734 Answers: 0 Comments: 0
Question Number 153721 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\mathrm{prove}\:\:\mathrm{that}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{x}^{\:\mathrm{3}} }{{sinh}\:\left(\:{x}\:\right)}\:{dx}\:=\:\frac{\pi\:^{\mathrm{4}} }{\mathrm{8}}\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 153555 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {cos}\left(\mathrm{2}{x}\right).{ln}\left({sin}\left({x}\right)\right){dx}\overset{?} {=}\:−\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{solution}\:\left(\mathrm{1}\:\right) \\ $$$$\:\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left(\:\mathrm{2}{cos}^{\:\mathrm{2}} \left({x}\right)−\mathrm{1}\right){ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\::=\:\mathrm{2}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {cos}^{\:\mathrm{2}} \left({x}\right).{ln}\left({sin}\left({x}\right)\right){dx}−\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:{we}\:{know}\:{that}\::\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({x}\right)\right){dx}\underset{{earlier}} {\overset{{derived}} {=}}\:\frac{−\pi}{\mathrm{2}}\:{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {cos}^{\:\mathrm{2}} \left({x}\right).{ln}\left({sin}\left({x}\right)\right){dx}\underset{{posts}} {\overset{{previous}} {=}}\:−\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\therefore\:\:\:\Omega\::=\:−\frac{\pi}{\mathrm{2}}\:{ln}\left(\mathrm{2}\right)\:−\frac{\pi}{\mathrm{4}}\:+\frac{\pi}{\mathrm{2}}\:{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\blacktriangleleft\:\:\:\:\Omega\:=−\:\frac{\pi}{\mathrm{4}}\:\:\blacktriangleright\:\:\:\:\:\:{m}.{n} \\ $$
Question Number 153535 Answers: 1 Comments: 0
$${find}\:\int\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{{x}^{\mathrm{3}} }\:{dx}=? \\ $$
Question Number 153430 Answers: 1 Comments: 2
Question Number 153200 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{{e}−\mathrm{1}} \int_{\mathrm{0}} ^{{e}−{x}−\mathrm{1}} \int_{\mathrm{0}} ^{{x}+{y}+{e}} \frac{{ln}\left({z}−{x}−{y}\right)}{\left({x}−{e}\right)\left({x}+{y}−{e}\right)}{dxdydz}=? \\ $$
Question Number 153151 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}^{\mathrm{3}} +\mathrm{1}\right)}{{x}+\mathrm{1}}{dx} \\ $$
Question Number 153117 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{cot}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{x}+\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$
Question Number 153114 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{log}\:\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 153112 Answers: 1 Comments: 0
$$\int_{−\pi} ^{\pi} \left(\mathrm{sin}\:^{\mathrm{75}} \mathrm{x}+\mathrm{x}^{\mathrm{125}} \right)\mathrm{dx}=\mathrm{0} \\ $$
Question Number 153111 Answers: 0 Comments: 0
$$\int_{−\mathrm{1}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{x}} \:\mathrm{dx}\:\mathrm{as}\:\mathrm{limit}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sum} \\ $$
Question Number 153110 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{3x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}\right)\mathrm{dx}\: \\ $$$$\mathrm{as}\:\mathrm{the}\:\mathrm{limit}\:\:\mathrm{of}\:\mathrm{sum} \\ $$
Question Number 153104 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} \frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{3}} +\left(\pi−{x}\right)^{\mathrm{3}} }{dx}=? \\ $$
Question Number 153063 Answers: 0 Comments: 5
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{show}\:\mathrm{that} \\ $$$$\: \\ $$$$\:\:\:\:\:\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\:\:{dx} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{is}\:\mathrm{unsolvable} \\ $$$$\: \\ $$
Question Number 153040 Answers: 0 Comments: 0
$$ \\ $$$$\:{prove}\:{that}.. \\ $$$$ \\ $$$$\Omega\:=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}\:\left({x}\:\right)}{{sinh}\left({x}\right)}{dx}\:=\frac{\pi}{\mathrm{2}}\:{tanh}\:\left(\frac{\pi}{\mathrm{2}}\right)\:\: \\ $$
Pg 54 Pg 55 Pg 56 Pg 57 Pg 58 Pg 59 Pg 60 Pg 61 Pg 62 Pg 63
Terms of Service
Privacy Policy
Contact: info@tinkutara.com