Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 59

Question Number 162535    Answers: 2   Comments: 3

prove that Ω = ∫_0 ^( ∞) (( ln ((1/x) ))/( x^( 4) + 17x^( 2) + 16)) dx=^? (π/(60)) ln(2)

$$ \\ $$$$\:\:\:\:\:\mathrm{prove}\:\mathrm{that} \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\:\mathrm{ln}\:\left(\frac{\mathrm{1}}{{x}}\:\right)}{\:{x}^{\:\mathrm{4}} \:+\:\mathrm{17}{x}^{\:\mathrm{2}} \:+\:\mathrm{16}}\:{dx}\overset{?} {=}\:\frac{\pi}{\mathrm{60}}\:\mathrm{ln}\left(\mathrm{2}\right) \\ $$$$ \\ $$

Question Number 162525    Answers: 2   Comments: 0

∫_0 ^∞ ((√x)/((x^2 +4x+4)))=?

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{\sqrt{{x}}}{\left({x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}\right)}=? \\ $$

Question Number 162513    Answers: 2   Comments: 0

∫_0 ^( ∞) ((log(x))/((x+1)(x+9)))

$$\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{log}\left(\mathrm{x}\right)}{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}+\mathrm{9}\right)} \\ $$

Question Number 162512    Answers: 0   Comments: 1

solve ∫(√(cosec^2 x−2)) dx

$${solve}\:\int\sqrt{{cosec}^{\mathrm{2}} {x}−\mathrm{2}}\:{dx} \\ $$

Question Number 162471    Answers: 2   Comments: 0

[reposted] find ∫_( 0) ^( (𝛑/2)) sin^8 (x)dx + ∫_( 0) ^( 1) sin^(-1) ((x)^(1/8) ) dx=?

$$\left[{reposted}\right] \\ $$$${find}\:\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\int}}\:\mathrm{sin}^{\mathrm{8}} \left(\mathrm{x}\right){dx}\:+\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{sin}^{-\mathrm{1}} \left(\sqrt[{\mathrm{8}}]{\mathrm{x}}\right)\:{dx}=? \\ $$

Question Number 162374    Answers: 0   Comments: 2

Question Number 162365    Answers: 0   Comments: 0

∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ln^2 (x+y+z)dxdydz=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{ln}^{\mathrm{2}} \left({x}+{y}+{z}\right){dxdydz}=? \\ $$

Question Number 162348    Answers: 1   Comments: 4

Question Number 162303    Answers: 0   Comments: 0

∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ln^2 (x+y+z)dxdydz=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{ln}^{\mathrm{2}} \left({x}+{y}+{z}\right){dxdydz}=? \\ $$

Question Number 162301    Answers: 1   Comments: 0

lim _(x→(π/2)) ( 1− sin(x))^( ( tan((x/2))−1 )) =?

$$\: \\ $$$$\mathrm{lim}\:_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\left(\:\mathrm{1}−\:{sin}\left({x}\right)\right)^{\:\left(\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{1}\:\right)} =? \\ $$$$ \\ $$

Question Number 162299    Answers: 1   Comments: 0

calculta ∫_0 ^∞ ((lnx)/((x^2 +x+1)^2 ))dx

$$\mathrm{calculta}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 162298    Answers: 1   Comments: 0

find ∫_0 ^1 lnx ln(1−x^3 )dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{lnx}\:\mathrm{ln}\left(\mathrm{1}−\mathrm{x}^{\mathrm{3}} \right)\mathrm{dx} \\ $$

Question Number 162297    Answers: 1   Comments: 0

find ∫_0 ^1 ln(1−x)ln(1+x)dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 162243    Answers: 2   Comments: 0

∫_( 0) ^( 1) ((((ln x)^4 )/( (√x) ))) dx =?

$$\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\left(\frac{\left(\mathrm{ln}\:{x}\right)^{\mathrm{4}} }{\:\sqrt{{x}}\:}\right)\:{dx}\:=? \\ $$

Question Number 162238    Answers: 1   Comments: 0

∫_0 ^1 (1/(x^7 +1))dx=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{7}} +\mathrm{1}}\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 162219    Answers: 2   Comments: 0

Ω=∫_0 ^1 ((log(1+x^7 ))/(1+x^7 ))dx=?

$$\Omega=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{log}\left(\mathrm{1}+{x}^{\mathrm{7}} \right)}{\mathrm{1}+{x}^{\mathrm{7}} }{dx}=? \\ $$

Question Number 162177    Answers: 1   Comments: 0

𝛗 = ∫_0 ^( 1) (( ln^( 2) ( x ). Li_( 2) (x ))/x^ ) dx =?

$$ \\ $$$$\:\:\:\boldsymbol{\phi}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{ln}^{\:\mathrm{2}} \left(\:{x}\:\right).\:\mathrm{Li}_{\:\mathrm{2}} \:\left({x}\:\right)}{{x}^{\:} }\:{dx}\:=? \\ $$

Question Number 162174    Answers: 0   Comments: 1

x^( 2) − 4x −1=0 α , β are roots α^( 3) + 17β +5 =? −−−solution−−− α is root ⇒ α^( 2) −4α −1=0 ⇒ α^( 2) = 4α +1 ✓ α^( 3) + 17β +5 = α . α^( 2) +17β +5 = α ( 4α +1 )+ 17β +5 = 4α^( 2) + α + 17β +5 = 4 (4α +1 )+α +17β +5=17(α+β)+9 = 17S +9= 17 (4 )+9=77

$$ \\ $$$$\:\:\:\:{x}^{\:\mathrm{2}} −\:\mathrm{4}{x}\:−\mathrm{1}=\mathrm{0}\:\: \\ $$$$\:\:\:\:\:\alpha\:,\:\beta\:\:{are}\:{roots}\: \\ $$$$\:\:\:\:\:\alpha^{\:\mathrm{3}} \:+\:\mathrm{17}\beta\:+\mathrm{5}\:=? \\ $$$$\:\:−−−{solution}−−− \\ $$$$\:\:\:\alpha\:\:\:{is}\:{root}\:\:\:\Rightarrow\:\alpha^{\:\mathrm{2}} −\mathrm{4}\alpha\:−\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\Rightarrow\:\alpha^{\:\mathrm{2}} =\:\mathrm{4}\alpha\:+\mathrm{1}\:\:\checkmark \\ $$$$\:\:\:\:\:\:\alpha^{\:\mathrm{3}} +\:\mathrm{17}\beta\:+\mathrm{5}\:=\:\alpha\:.\:\alpha^{\:\mathrm{2}} +\mathrm{17}\beta\:+\mathrm{5} \\ $$$$\:\:=\:\alpha\:\left(\:\mathrm{4}\alpha\:+\mathrm{1}\:\right)+\:\mathrm{17}\beta\:+\mathrm{5} \\ $$$$\:\:=\:\mathrm{4}\alpha^{\:\mathrm{2}} +\:\alpha\:+\:\mathrm{17}\beta\:+\mathrm{5} \\ $$$$\:\:=\:\mathrm{4}\:\left(\mathrm{4}\alpha\:+\mathrm{1}\:\right)+\alpha\:+\mathrm{17}\beta\:+\mathrm{5}=\mathrm{17}\left(\alpha+\beta\right)+\mathrm{9} \\ $$$$\:\:=\:\mathrm{17S}\:+\mathrm{9}=\:\mathrm{17}\:\left(\mathrm{4}\:\right)+\mathrm{9}=\mathrm{77} \\ $$$$ \\ $$

Question Number 162171    Answers: 0   Comments: 0

Question Number 162112    Answers: 1   Comments: 0

∫(( cos(x))/((1−cos(x))^2 ))dx=?

$$\int\frac{\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)}{\left(\mathrm{1}−\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\right)^{\mathrm{2}} }\boldsymbol{{dx}}=? \\ $$

Question Number 162099    Answers: 0   Comments: 0

PROVE THAT Ω= ∫_0 ^( 1) (( Li_( 2) (x ). ln( x ))/x) dx =^? (( −π^( 4) )/(90)) −−−−−−−−−− Ω= ∫_0 ^( 1) ln (x )Σ_(n=1) ^∞ (( x^( n−1) )/n^( 2) ) dx = Σ_(n=1) ^∞ (1/n^( 2) ) ∫_0 ^( 1) x^( n−1) . ln(x ) dx = Σ_(n=1) ^∞ (1/n^( 2) ) {[ (x^( n) /n) ln( x )]_0 ^( 1) −(1/n) ∫_0 ^( 1) x^( n−1) dx} = Σ_(n=1) ^∞ ((−1)/n^( 4) ) = − ζ (4 ) = ((−π^( 4) )/( 90)) ■ m.n −−− M . N −−−

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathscr{PROVE}\:\:\:\mathscr{THAT}\:\: \\ $$$$\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{Li}_{\:\mathrm{2}} \:\left({x}\:\right).\:\mathrm{ln}\left(\:{x}\:\right)}{{x}}\:{dx}\:\overset{?} {=}\:\frac{\:−\pi^{\:\mathrm{4}} }{\mathrm{90}} \\ $$$$\:\:\:\:\:−−−−−−−−−− \\ $$$$\:\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{ln}\:\left({x}\:\right)\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{x}^{\:{n}−\mathrm{1}} }{{n}^{\:\mathrm{2}} }\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\:\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:{x}^{\:{n}−\mathrm{1}} .\:\mathrm{ln}\left({x}\:\right)\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\:\mathrm{2}} }\:\left\{\left[\:\frac{{x}^{\:{n}} }{{n}}\:\mathrm{ln}\left(\:{x}\:\right)\right]_{\mathrm{0}} ^{\:\mathrm{1}} −\frac{\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\:{n}−\mathrm{1}} {dx}\right\} \\ $$$$\:\:\:\:\:\:\:\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{−\mathrm{1}}{{n}^{\:\mathrm{4}} }\:=\:−\:\zeta\:\left(\mathrm{4}\:\right)\:=\:\frac{−\pi^{\:\mathrm{4}} }{\:\mathrm{90}}\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:−−−\:\mathscr{M}\:.\:\mathscr{N}\:\:−−−\: \\ $$$$ \\ $$

Question Number 162117    Answers: 2   Comments: 1

Question Number 162066    Answers: 0   Comments: 0

Σ_(n=1) ^∞ (((−1)^n H_n )/n^2 )=???

$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} \boldsymbol{\mathrm{H}}_{\boldsymbol{\mathrm{n}}} }{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }=??? \\ $$

Question Number 162055    Answers: 1   Comments: 0

∫e^(2x) (√((1 −e^(2x) )))dx

$$\int{e}^{\mathrm{2x}} \sqrt{\left(\mathrm{1}\:−{e}^{\mathrm{2}{x}} \right)}{dx} \\ $$

Question Number 162054    Answers: 1   Comments: 0

Question Number 162073    Answers: 3   Comments: 0

prove that Ω =∫_(−∞) ^( +∞) (( cos (x))/((2+ 2x +x^( 2) )^( 2) )) dx = (π/e) cos(1)

$$ \\ $$$$\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\:\Omega\:=\int_{−\infty} ^{\:+\infty} \frac{\:{cos}\:\left({x}\right)}{\left(\mathrm{2}+\:\mathrm{2}{x}\:+{x}^{\:\mathrm{2}} \right)^{\:\mathrm{2}} }\:{dx}\:=\:\frac{\pi}{{e}}\:{cos}\left(\mathrm{1}\right) \\ $$

  Pg 54      Pg 55      Pg 56      Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62      Pg 63   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com