Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 51

Question Number 161100    Answers: 0   Comments: 0

f(x^2 )= 2+∫_( 0) ^( x^2 ) f(y) (1−tan y)dy , ∀x∈R f(−π)=?

$$\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \right)=\:\mathrm{2}+\int_{\:\mathrm{0}} ^{\:\mathrm{x}^{\mathrm{2}} } \mathrm{f}\left(\mathrm{y}\right)\:\left(\mathrm{1}−\mathrm{tan}\:\mathrm{y}\right)\mathrm{dy}\:,\:\forall\mathrm{x}\in\mathbb{R} \\ $$$$\:\mathrm{f}\left(−\pi\right)=? \\ $$

Question Number 161089    Answers: 3   Comments: 0

prove that I= ∫_0 ^( (π/2)) ln ( 1+ sin (2 α )) dα = 2G − π ln ((√2) ) G: catalan constant

$$ \\ $$$$\:\:{prove}\:{that} \\ $$$$\:\:\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:\left(\:\mathrm{1}+\:{sin}\:\left(\mathrm{2}\:\alpha\:\right)\right)\:{d}\alpha\: \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\:\mathrm{2G}\:−\:\pi\:\mathrm{ln}\:\left(\sqrt{\mathrm{2}}\:\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{G}:\:\:{catalan}\:{constant} \\ $$

Question Number 161076    Answers: 1   Comments: 0

Ω = ∫_0 ^( ∞) ((ln (1+ x ))/((1+ x^( 2) )^( 2) )) dx = ? −−−−−−−−−−−−

$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\:\left(\mathrm{1}+\:{x}\:\right)}{\left(\mathrm{1}+\:{x}^{\:\mathrm{2}} \right)^{\:\mathrm{2}} }\:{dx}\:=\:? \\ $$$$\:\:\:\:\:−−−−−−−−−−−− \\ $$$$\:\:\:\:\:\:\:\: \\ $$

Question Number 161003    Answers: 0   Comments: 0

Question Number 160982    Answers: 0   Comments: 0

Ω = ∫_0 ^( 1) (( ln (−ln (x)))/(1+x)) dx =^? ((−1)/2) ln^( 2) (2)

$$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}\:\left(−{ln}\:\left({x}\right)\right)}{\mathrm{1}+{x}}\:{dx}\:\overset{?} {=}\frac{−\mathrm{1}}{\mathrm{2}}\:{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right) \\ $$

Question Number 160979    Answers: 1   Comments: 0

Ω=∫_0 ^1 x^(n−1) ln(1−x)dx=??? n≥1

$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \boldsymbol{\mathrm{ln}}\left(\mathrm{1}−\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}}=???\:\:\: \\ $$$$\boldsymbol{\mathrm{n}}\geqslant\mathrm{1} \\ $$

Question Number 160928    Answers: 1   Comments: 0

calculate Ω = Σ_(n=1) ^∞ (( ζ ( 1+ n ) −1)/(n + 1)) =^? 1− γ −−−−−−−−−−−

$$ \\ $$$$\:\:\:\:\:\:\:{calculate} \\ $$$$ \\ $$$$\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\zeta\:\left(\:\mathrm{1}+\:{n}\:\right)\:−\mathrm{1}}{{n}\:+\:\mathrm{1}}\:\overset{?} {=}\:\mathrm{1}−\:\gamma\: \\ $$$$\:−−−−−−−−−−− \\ $$

Question Number 160902    Answers: 1   Comments: 0

∫ (dx/( (√(sin^3 x)) (√(cos^5 x)))) =?

$$\:\:\int\:\frac{{dx}}{\:\sqrt{\mathrm{sin}\:^{\mathrm{3}} {x}}\:\sqrt{\mathrm{cos}\:^{\mathrm{5}} {x}}}\:=? \\ $$

Question Number 160792    Answers: 2   Comments: 0

∫ ((sec x)/( (√(1+2sec x)))) (√((cosec x−cot x)/(cosec x+cot x))) dx =?

$$\:\:\:\int\:\frac{\mathrm{sec}\:\mathrm{x}}{\:\sqrt{\mathrm{1}+\mathrm{2sec}\:\mathrm{x}}}\:\sqrt{\frac{\mathrm{cosec}\:\mathrm{x}−\mathrm{cot}\:\mathrm{x}}{\mathrm{cosec}\:\mathrm{x}+\mathrm{cot}\:\mathrm{x}}}\:\mathrm{dx}\:=? \\ $$

Question Number 160767    Answers: 1   Comments: 0

∫_( 0) ^( (π/2)) ((cos^2 x)/(cos^2 x+4sin^2 x)) dx =?

$$\:\:\:\:\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}\:=?\: \\ $$

Question Number 160734    Answers: 0   Comments: 1

# Advanced Calculus # Φ = ∫_0 ^( 1) (((ln^ ( (1/(1− x)) ))/x) )^( 3) dx =^? 3 ( ζ (2 ) + ζ (3 )) −−−− solution−−−− Φ =^(I.B.P) [ (( 1)/(2x^( 2) )) ln^( 3) ( 1−x)]_0 ^1 +(3/2) ∫_0 ^( 1) (( ln^( 2) (1− x ))/(x^( 2) (1 − x ))) dx = (1/2) lim_( ξ →1^(− ) ) ((ln^( 3) ( 1− ξ ))/ξ^( 2) ) +(3/2)[∫_0 ^( 1) (( ln^( 2) ( 1− x ))/x)dx = 2 ζ (3)] + (3/2)[∫_0 ^( 1) (( ln^( 2) ( 1−x))/x^( 2) ) dx = (π^( 2) /3) = 2ζ (2 )] +(3/2)∫_0 ^( 1) (( ln^( 2) (1− x))/(1−x)) dx} =(1/2) lim_( ξ →1^( −) ) {((ln^( 3) ( 1−ξ ))/ξ^( 2) ) −ln^( 3) (1− ξ ) } +(3/2) (2ζ (3 )) +(3/2) ( 2ζ (2 )) = 3( ζ (3 ) + 3ζ (2 ) ) ■ m.n

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:#\:\mathrm{Advanced}\:\:\:\mathrm{Calculus}\:# \\ $$$$\:\:\:\:\:\:\:\:\Phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{ln}^{\:} \:\left(\:\frac{\mathrm{1}}{\mathrm{1}−\:{x}}\:\:\right)}{{x}}\:\right)^{\:\mathrm{3}} {dx}\:\overset{?} {=}\:\mathrm{3}\:\left(\:\zeta\:\left(\mathrm{2}\:\right)\:+\:\zeta\:\left(\mathrm{3}\:\right)\right) \\ $$$$\:\:\:\:\:\:−−−−\:\:{solution}−−−− \\ $$$$\:\:\:\:\:\:\:\:\Phi\:\overset{\mathrm{I}.\mathrm{B}.\mathrm{P}} {=}\:\left[\:\frac{\:\mathrm{1}}{\mathrm{2}{x}^{\:\mathrm{2}} }\:{ln}^{\:\mathrm{3}} \left(\:\mathrm{1}−{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\frac{\mathrm{3}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \:\left(\mathrm{1}−\:{x}\:\right)}{{x}^{\:\mathrm{2}} \:\left(\mathrm{1}\:−\:{x}\:\right)}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{lim}_{\:\xi\:\rightarrow\mathrm{1}^{−\:} } \:\frac{{ln}^{\:\mathrm{3}} \left(\:\mathrm{1}−\:\xi\:\right)}{\xi^{\:\mathrm{2}} }\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{3}}{\mathrm{2}}\left[\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\:\mathrm{1}−\:{x}\:\right)}{{x}}{dx}\:=\:\mathrm{2}\:\zeta\:\left(\mathrm{3}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:+\:\frac{\mathrm{3}}{\mathrm{2}}\left[\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\:\mathrm{1}−{x}\right)}{{x}^{\:\mathrm{2}} }\:{dx}\:=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{3}}\:=\:\mathrm{2}\zeta\:\left(\mathrm{2}\:\right)\right]\: \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{3}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−\:{x}\right)}{\mathrm{1}−{x}}\:{dx}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\:{lim}_{\:\xi\:\rightarrow\mathrm{1}^{\:−} } \left\{\frac{{ln}^{\:\mathrm{3}} \left(\:\mathrm{1}−\xi\:\right)}{\xi^{\:\mathrm{2}} }\:\:−{ln}^{\:\mathrm{3}} \left(\mathrm{1}−\:\xi\:\right)\:\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{3}}{\mathrm{2}}\:\left(\mathrm{2}\zeta\:\left(\mathrm{3}\:\right)\right)\:\:+\frac{\mathrm{3}}{\mathrm{2}}\:\left(\:\mathrm{2}\zeta\:\left(\mathrm{2}\:\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\:\mathrm{3}\left(\:\:\:\zeta\:\left(\mathrm{3}\:\right)\:+\:\mathrm{3}\zeta\:\left(\mathrm{2}\:\right)\:\:\right)\:\:\:\:\:\:\:\blacksquare\:\:\:{m}.{n}\:\:\: \\ $$$$ \\ $$

Question Number 160733    Answers: 0   Comments: 0

Question Number 160807    Answers: 0   Comments: 0

−1≤a_0 ≤b_0 ≤c_0 ≤1 ∀n∈N a_(n+1) =∫_(−1) ^1 min(x,b_n ,c_n )dx b_(n+1) =∫_(−1) ^1 mil(x,a_n ,c_n )dx c_(n+1) =∫_(−1) ^1 max(x,b_n ,a_n )dx mil(a,b,c) est le terme median de (a,b,c) nature de (a_n ),(b_n ),(c_n )

$$−\mathrm{1}\leqslant{a}_{\mathrm{0}} \leqslant{b}_{\mathrm{0}} \leqslant{c}_{\mathrm{0}} \leqslant\mathrm{1} \\ $$$$\forall{n}\in\mathbb{N}\: \\ $$$${a}_{{n}+\mathrm{1}} =\int_{−\mathrm{1}} ^{\mathrm{1}} {min}\left({x},{b}_{{n}} ,{c}_{{n}} \right){dx} \\ $$$${b}_{{n}+\mathrm{1}} =\int_{−\mathrm{1}} ^{\mathrm{1}} {mil}\left({x},{a}_{{n}} ,{c}_{{n}} \right){dx} \\ $$$${c}_{{n}+\mathrm{1}} =\int_{−\mathrm{1}} ^{\mathrm{1}} {max}\left({x},{b}_{{n}} ,{a}_{{n}} \right){dx} \\ $$$${mil}\left({a},{b},{c}\right)\:{est}\:{le}\:{terme}\:{median}\:{de}\:\left({a},{b},{c}\right) \\ $$$${nature}\:{de}\:\left({a}_{{n}} \right),\left({b}_{{n}} \right),\left({c}_{{n}} \right) \\ $$$$ \\ $$

Question Number 160645    Answers: 2   Comments: 1

∫ sin^8 x dx =?

$$\:\int\:\mathrm{sin}\:^{\mathrm{8}} \mathrm{x}\:\mathrm{dx}\:=? \\ $$

Question Number 160636    Answers: 1   Comments: 0

prove that ∫_(0 ) ^( 1) (((tanh^( −1) ( x ))/x) )^( 2) = ζ ( 2 ) ■ m.n

$$ \\ $$$$\:\:\:\:\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}\:\:} ^{\:\mathrm{1}} \left(\frac{{tanh}^{\:−\mathrm{1}} \left(\:{x}\:\right)}{{x}}\:\right)^{\:\mathrm{2}} =\:\zeta\:\left(\:\mathrm{2}\:\right)\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\: \\ $$$$ \\ $$$$ \\ $$

Question Number 160597    Answers: 1   Comments: 0

∫_0 ^( (π/2)) (dx/(2−cos x)) =?

$$\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{dx}}{\mathrm{2}−\mathrm{cos}\:\mathrm{x}}\:=? \\ $$

Question Number 160594    Answers: 1   Comments: 0

∫ (dx/(1−tan^2 (x))) =?

$$\:\:\:\:\int\:\frac{\mathrm{dx}}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \left(\mathrm{x}\right)}\:=? \\ $$

Question Number 160590    Answers: 0   Comments: 0

Ω:=∫_0 ^( (1/2)) (( arcsinh(x))/x) dx =^? (π^2 /(20))

$$ \\ $$$$\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \frac{\:{arcsinh}\left({x}\right)}{{x}}\:{dx}\:\overset{?} {=}\:\frac{\pi^{\mathrm{2}} }{\mathrm{20}} \\ $$

Question Number 160563    Answers: 1   Comments: 0

∫x{x}[x]dx=?

$$\int\mathrm{x}\left\{\mathrm{x}\right\}\left[\mathrm{x}\right]\mathrm{dx}=? \\ $$

Question Number 160556    Answers: 0   Comments: 0

∫_0 ^∞ ((arctg(x))/(1+x))∙(dx/( (x)^(1/4) ))=?

$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{arctg}}\left(\boldsymbol{\mathrm{x}}\right)}{\mathrm{1}+\boldsymbol{\mathrm{x}}}\centerdot\frac{\boldsymbol{\mathrm{dx}}}{\:\sqrt[{\mathrm{4}}]{\boldsymbol{\mathrm{x}}}}=? \\ $$

Question Number 160551    Answers: 1   Comments: 2

∫_0 ^1 arctan x∙ln(1+x)dx=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{arctan}\:\mathrm{x}\centerdot\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{dx}=? \\ $$

Question Number 160547    Answers: 1   Comments: 0

solve Ω=∫_0 ^( ∞) (( tan^( −1) ( x ))/((1+ x^( 2) )(√( x)))) dx= ? −−−−−−−−

$$\:\:{solve} \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \left(\:{x}\:\right)}{\left(\mathrm{1}+\:{x}^{\:\mathrm{2}} \:\right)\sqrt{\:{x}}}\:{dx}=\:? \\ $$$$−−−−−−−− \\ $$

Question Number 160543    Answers: 0   Comments: 0

lim_( x→ 6) (( Γ ( sin( (π/x)))−Γ ((3/x) ))/(sin( πx )))= ?

$$ \\ $$$$\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{6}} \frac{\:\Gamma\:\left(\:{sin}\left(\:\frac{\pi}{{x}}\right)\right)−\Gamma\:\left(\frac{\mathrm{3}}{{x}}\:\right)}{{sin}\left(\:\pi{x}\:\right)}=\:? \\ $$$$ \\ $$

Question Number 160415    Answers: 1   Comments: 0

∫_0 ^∞ (t^n /(1+t+t^2 ))dt=?

$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{t}}^{\boldsymbol{\mathrm{n}}} }{\mathrm{1}+\boldsymbol{\mathrm{t}}+\boldsymbol{\mathrm{t}}^{\mathrm{2}} }\boldsymbol{\mathrm{dt}}=? \\ $$

Question Number 160362    Answers: 0   Comments: 0

∫(x^n /( (√(x−x^2 ))))dx=?

$$\int\frac{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}} }{\:\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }}\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 160358    Answers: 1   Comments: 0

∫_0 ^(π/2) ln(sinx)ln(cosx)dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{sin}{x}\right)\mathrm{ln}\left(\mathrm{cos}{x}\right){dx} \\ $$

  Pg 46      Pg 47      Pg 48      Pg 49      Pg 50      Pg 51      Pg 52      Pg 53      Pg 54      Pg 55   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com