Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 51
Question Number 167355 Answers: 0 Comments: 4
Question Number 167328 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \:\frac{\mathrm{cos}\:{x}+\mathrm{cos}\:^{\mathrm{5}} {x}\:\mathrm{sin}\:{x}}{\:\sqrt{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} {x}}}\:{dx}\:=? \\ $$
Question Number 167318 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\int\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}+\sqrt[{\mathrm{3}}]{\mathrm{x}}}}\:=? \\ $$
Question Number 167312 Answers: 2 Comments: 1
$$\:\:\:\:\:\:\:\int\:\frac{\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}+\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}−\mathrm{1}}\:\mathrm{dx}\:=? \\ $$
Question Number 167310 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{NICE}}\:\boldsymbol{\mathrm{CALCULUS}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\left(\mathrm{1}−\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{ln}}\left(\mathrm{1}−\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\right)}{\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}}=? \\ $$$$ \\ $$$$ \\ $$
Question Number 167305 Answers: 1 Comments: 0
$$\:\:\:{Q}=\int\:\frac{\mathrm{2sin}\:\left({x}\right)}{\:\sqrt{\mathrm{3}}\:\mathrm{sin}\:\left({x}\right)−\mathrm{cos}\:\left({x}\right)}\:{dx}=? \\ $$
Question Number 170532 Answers: 1 Comments: 0
$$\mathrm{Let}\:{I}_{{n}} \:=\int{x}^{{n}} {e}^{−{x}} {dx},\:{n}\:=\:\mathrm{0},\mathrm{1},\mathrm{2},... \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Show}\:\mathrm{that}\:{I}_{{n}} \:=\:−{x}^{{n}} {e}^{−{x}} +{nI}_{{n}−\mathrm{1}} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Show}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\infty} {x}^{{n}} {e}^{−{x}} {dx}\:=\:{n}! \\ $$
Question Number 167223 Answers: 0 Comments: 3
$$\:\:\int\:\mathrm{sin}\:^{\mathrm{3}} \left(\mathrm{3x}\right)\:\mathrm{cos}\:^{\mathrm{4}} \left(\mathrm{5x}\right)\:\mathrm{dx}=? \\ $$
Question Number 167213 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{solve} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\mathcal{I}=\:\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \frac{{ln}^{\:\mathrm{2}} \left({x}\right)}{\mathrm{1}−{x}}\:{dx}\:=? \\ $$$$ \\ $$
Question Number 167173 Answers: 1 Comments: 0
$$\int_{−\mathrm{2}} ^{−\mathrm{1}} {e}^{−\frac{{t}}{\mathrm{2}}} \sqrt{{t}+\mathrm{2}}\:{dt}\:=\:??? \\ $$
Question Number 167150 Answers: 1 Comments: 0
Question Number 167115 Answers: 0 Comments: 0
Question Number 167102 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{Li}_{\:\mathrm{2}} \left(\mathrm{1}−\:{x}\:\right)}{\mathrm{1}+{x}}\:{dx}\:=\:? \\ $$$$\:\:\:\:\:\:−−−−− \\ $$
Question Number 167092 Answers: 0 Comments: 0
Question Number 167082 Answers: 1 Comments: 1
Question Number 167048 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\Phi=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}.\psi\:\left(\mathrm{2}+{x}\:\right)=\:\mathrm{2}\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{8}\pi\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:−−− \\ $$
Question Number 167040 Answers: 0 Comments: 1
$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{6}} \mathrm{x}}\:\mathrm{dx}=? \\ $$
Question Number 167025 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}\:}\mathrm{sin}\:^{\mathrm{2}} \theta}\:\mathrm{d}\theta \\ $$
Question Number 167024 Answers: 1 Comments: 0
$$\int\mathrm{sec}\:\theta\mathrm{tan}\:^{\mathrm{4}} \theta\mathrm{d}\theta \\ $$
Question Number 167006 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\int\:\frac{\mathrm{3x}^{\mathrm{3}} }{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{3}} }\:\mathrm{dx}=? \\ $$
Question Number 166959 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\gamma=\int\:\frac{\mathrm{e}^{\mathrm{x}} \left(\mathrm{sin}\:\mathrm{x}+\mathrm{1}\right)}{\mathrm{cos}\:\mathrm{x}+\mathrm{1}}\:\mathrm{dx}\:=? \\ $$
Question Number 166956 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{calculate} \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\sqrt{{x}}\:{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\:\mathrm{2}} }{dx}\:=? \\ $$
Question Number 166940 Answers: 1 Comments: 0
Question Number 166939 Answers: 1 Comments: 0
Question Number 166916 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\Omega=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{H}_{\:{n}} }{{n}\left({n}+\mathrm{1}\right)}\:= \\ $$$$\:\:\:\:\:\:\:−−−−−− \\ $$$$\:\:\:\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\int_{\mathrm{0}\:} ^{\:\mathrm{1}} {x}^{\:{n}−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\:\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{ln}\left(\mathrm{1}−{x}\right).\underset{{n}=\mathrm{1}} {\sum}\frac{{x}^{\:{n}+\mathrm{1}} }{{n}+\mathrm{1}}\right\}{dx} \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\frac{−{ln}\left(\mathrm{1}−{x}\right)}{{x}^{\:\mathrm{2}} }\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{{x}^{\:{n}} }{{n}}\right\}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{−{ln}\left(\mathrm{1}−{x}\right)}{{x}^{\:\mathrm{2}} }\:\left\{−{x}\:+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{\:{n}} }{{n}}\:\right\}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:−{li}_{\:\mathrm{2}} \left(\:\mathrm{1}\right)\:+\left[\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\:\mathrm{2}} \left(\:\mathrm{1}−{x}\:\right)}{{x}^{\:\mathrm{2}} }{dx}\underset{{derived}} {\overset{{earlier}} {=}}\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{3}}\:\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:−\frac{\pi^{\:\mathrm{2}} }{\mathrm{6}}\:+\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{3}}\:=\:\frac{\:\pi^{\:\mathrm{2}} }{\mathrm{6}}\:=\:\zeta\:\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$
Question Number 166829 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:{calculate}\: \\ $$$$\:\:\:\mathrm{I}{f}\:,\:\:\:\:{f}\left({x}\right)=\frac{\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt[{\mathrm{3}}]{\left({x}^{\:\mathrm{2}} +{x}−\mathrm{2}\right)\left({x}^{\:\mathrm{4}} −\mathrm{1}\right)\left({x}^{\:\mathrm{2}} +\mathrm{2}{x}−\mathrm{3}\right)+\mathrm{16}}\:\:+\:\sqrt{{x}^{\:\mathrm{2}} +\mathrm{3}}}{\left(\:\mathrm{1}+{x}\:+{x}^{\:\mathrm{2}} \right)} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{then}\:,\:\:\:\:{f}\:'\:\left(\mathrm{1}\:\right)\:=?\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$ \\ $$
Pg 46 Pg 47 Pg 48 Pg 49 Pg 50 Pg 51 Pg 52 Pg 53 Pg 54 Pg 55
Terms of Service
Privacy Policy
Contact: info@tinkutara.com