Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 313
Question Number 27815 Answers: 1 Comments: 0
$$\int\frac{\mathrm{cos}\:\mathrm{x}−\mathrm{cos}\:\mathrm{2x}}{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}\mathrm{dx} \\ $$
Question Number 27805 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{1}} ^{\propto} \:\:\frac{{arctan}\left(\alpha{x}\right)}{{x}^{\mathrm{2}} }\:. \\ $$
Question Number 27804 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\propto} \:\:\frac{{e}^{−{ax}} \:−\:{e}^{−{bx}} }{{x}^{\mathrm{2}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$${b}>{o} \\ $$
Question Number 27803 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left({x}\:+{x}^{−\mathrm{1}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$
Question Number 27802 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{2}{x}^{\mathrm{2}} } }{\left(\mathrm{3}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 27797 Answers: 0 Comments: 1
$${find}\:\:\:\int\:\sqrt{\mathrm{2}+{tan}^{\mathrm{2}} {t}}\:\:{dt}. \\ $$
Question Number 27796 Answers: 0 Comments: 0
$${find}\:\:\int\:\:\:\frac{{x}^{\mathrm{2}} }{\left({cosx}\:+{x}\:{sinx}\right)^{\mathrm{2}} }\:\:. \\ $$
Question Number 27794 Answers: 0 Comments: 0
$${let}\:{give}\:\:{I}\left({x}\right)=\:\int_{\mathrm{0}} ^{\pi} {ln}\:\left(\mathrm{1}−\mathrm{2}{x}\:{cost}\:+{x}^{\mathrm{2}} \right){dt}\:{by}\:{using}\:{the} \\ $$$${polynomial}\:{p}\left({x}\right)=\:\left({z}+{x}\right)^{\mathrm{2}{n}} −\mathrm{1}\:\:{find}\:{the}\:{value}\:{of}\:{I}\left({x}\right). \\ $$
Question Number 27788 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}\left({nt}\right)}{{sint}}{dt}\:\:{with}\:{n}\in{N}^{\ast} \:. \\ $$
Question Number 27781 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{ln}\left(\mathrm{1}+{x}\:{sin}^{\mathrm{2}} {t}\right)}{{sin}^{\mathrm{2}} {t}}\:{dt}\:{knowing}\:{that} \\ $$$$−\mathrm{1}<{x}<\mathrm{1}\:. \\ $$
Question Number 27764 Answers: 1 Comments: 0
$$\int\sqrt{\mathrm{tan}\:{x}}{dx} \\ $$
Question Number 27693 Answers: 1 Comments: 1
$$\left.\mathrm{1}\right)\:{calculate}\:\:\int\int_{\left.\right]\left.\mathrm{0}\left.,\left.\mathrm{1}\right]×\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\right]} \:\:\:\frac{{dxdy}}{\mathrm{1}+\left({xtany}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{t}}{{tant}}{dt}\:. \\ $$
Question Number 27692 Answers: 0 Comments: 1
$${find}\:{by}\:{two}\:{ways}\:{the}\:{value}\:{of}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]} \:\:{x}^{{y}} \:\:{dxdxy}\:{then} \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{t}−\mathrm{1}}{{lnt}}{dt}\:\:. \\ $$
Question Number 27691 Answers: 0 Comments: 1
$${let}\:{give}\:\:{A}=\int\int_{\mathrm{0}\leqslant{y}\leqslant{x}\leqslant\mathrm{1}} \:\:\:\:\:\:\frac{{dxdxy}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)}\:\:{and} \\ $$$${B}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{ln}\left(\mathrm{2}{cos}^{\mathrm{2}} \theta\right)}{\mathrm{2}{cos}\left(\mathrm{2}\theta\right)}{d}\theta\:\:{calculate}\:{A}\:{and}\:{prove}\:{that}\:{B}={A}. \\ $$
Question Number 27690 Answers: 0 Comments: 1
$${find}\:\:\:{I}=\:\:\int\int_{{D}} {ln}\left(\mathrm{1}+{x}+{y}\right){dxdy}\:\:{with} \\ $$$${D}=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:\:\:/\:\:{x}+{y}\leqslant\mathrm{1}\:{and}\:{x}\geqslant\mathrm{0}\:{and}\:{y}\geqslant\mathrm{0}\:\right\}. \\ $$
Question Number 27757 Answers: 1 Comments: 0
$${calculate}\:\:{I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\mathrm{1}+{cosx}}\:{and}\:{J}=\:\int_{\mathrm{0}^{} } ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{cosx}}{\mathrm{1}+{cosx}}{dx}\:. \\ $$
Question Number 28038 Answers: 0 Comments: 0
$${let}\:{give}\:{f}\left({x}\right)=\sqrt{{x}+{y}}\:+\mathrm{1}\:\:{and}\:{D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\right. \\ $$$$\left.{and}\:−\mathrm{1}\leqslant{y}\leqslant\mathrm{1}\right\}\:\:{find}\:{the}\:{value}\:{of}\:\:\int\int\:{f}\left({x},{y}\right){dxdy}\:. \\ $$
Question Number 27684 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{existence}\:{of}\:{the}\:{integral} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{ln}\left(\mathrm{1}+{cosx}\right)}{{cosx}}{dx} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{I}=\:\int\int_{{D}} \:\:\frac{{siny}}{\mathrm{1}+{cosx}\:{cosy}}{dxdy}\:{with}\: \\ $$$${D}=\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]^{\mathrm{2}} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:{I}. \\ $$
Question Number 27666 Answers: 0 Comments: 0
$${let}\:{give}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{n}} }{\mathrm{1}+{x}^{{n}} }{dx} \\ $$$$\left(\mathrm{1}\right)\:{prove}\:{that}\:\:{lim}_{{n}−>\propto} {I}_{{n}} =\mathrm{0} \\ $$$$\left(\mathrm{2}\right){calculate}\:{I}_{{n}} \:+{I}_{{n}+\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:{find}\:\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:. \\ $$
Question Number 28200 Answers: 0 Comments: 1
$${let}\:{give}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:{and}\:{J}=\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\frac{{x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{xy}\right)}{dxdy} \\ $$$${calculate}\:{J}\:{by}\:{two}\:{methods}\:{then}\:{find}\:{the}\:{value}\:{of}\:{I}. \\ $$
Question Number 27643 Answers: 2 Comments: 1
Question Number 27621 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 27620 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{x}^{\mathrm{2}} } }{\mathrm{3}+{x}^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 27619 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}. \\ $$
Question Number 27616 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{x}\right){dx}\:\:. \\ $$
Question Number 27615 Answers: 0 Comments: 2
$$\int{x}^{\mathrm{5}/\mathrm{2}} \left(\mathrm{1}−{x}\right)^{\mathrm{3}/\mathrm{2}} {dx} \\ $$
Pg 308 Pg 309 Pg 310 Pg 311 Pg 312 Pg 313 Pg 314 Pg 315 Pg 316 Pg 317
Terms of Service
Privacy Policy
Contact: info@tinkutara.com