Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 304
Question Number 29441 Answers: 0 Comments: 1
$${find}\:\int\:\:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{2}−{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$
Question Number 29440 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\frac{{cosx}}{\left(\mathrm{2}+{cosx}\right)\left(\mathrm{3}+{cosx}\right)}{dx} \\ $$
Question Number 29439 Answers: 1 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\pi} \:\frac{{dx}}{\mathrm{2}+{cosx}}\:. \\ $$
Question Number 29384 Answers: 0 Comments: 3
$${Please}\:{can}\:{it}\:{be}\:{proven}\:{by}\:{another} \\ $$$${means}\:{that}\: \\ $$$$ \\ $$$$\:\:\:\:\:\int\mathrm{tan}\:^{\mathrm{2}} {xdx}={tanx}+{x}\:+{c} \\ $$
Question Number 29423 Answers: 0 Comments: 1
Question Number 29311 Answers: 0 Comments: 0
$$\int\left(\mathrm{2}{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{5}}} {dx}\:{and}\:{limit}\:{is}\:{from}\:\mathrm{0}\:{to}\:\mathrm{1} \\ $$
Question Number 29202 Answers: 1 Comments: 0
$${Find}\:{area}\:{between}\:{by}\:{y}=\mathrm{1}\:\:{and} \\ $$$${y}=\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:. \\ $$
Question Number 29162 Answers: 0 Comments: 1
$${find}\:\:{find}\:{I}=\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\:\:\frac{\mid{x}−\mathrm{2}\mid}{\left({x}^{\mathrm{2}} −\mathrm{4}{x}\right)^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 29105 Answers: 0 Comments: 2
$$\mathrm{Show}\:\mathrm{that}:\:\:\:\int_{−\mathrm{1}} ^{\:\:\:\mathrm{1}} \:\:\:\:\:\:\:\frac{\mathrm{dx}}{\mathrm{5}\:\mathrm{cosh}\left(\mathrm{x}\right)\:+\:\mathrm{13}\:\mathrm{sinh}\left(\mathrm{x}\right)}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{log}_{\mathrm{e}} \left(\frac{\mathrm{15e}\:−\:\mathrm{10}}{\mathrm{3e}\:+\:\mathrm{2}}\right)\: \\ $$
Question Number 29079 Answers: 0 Comments: 0
$${let}\:{give}\:{w}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{arcsin}\left({x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:{find}\:{w}\left({x}\right). \\ $$
Question Number 29078 Answers: 0 Comments: 2
$${let}\:{give}\:\:{h}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left({xt}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }\:\:{find}\:{h}\left({x}\right)\:. \\ $$
Question Number 29077 Answers: 0 Comments: 1
$${let}\:{give}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:{find}\:{a}\:{simple} \\ $$$${form}\:{of}\:\:{g}^{'} \left({x}\right)\:{without}\:{integral}. \\ $$
Question Number 29076 Answers: 0 Comments: 1
$${let}\:{give}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left({x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:{find}\:{asimple} \\ $$$${form}\:{of}\:{f}\left({x}\right)\:{without}\:{integral}. \\ $$
Question Number 29043 Answers: 0 Comments: 1
$$\int\mathrm{tan}^{−} \left(\mathrm{1}−\mathrm{sinx}/\mathrm{1}+\mathrm{sinx}\right)\:\mathrm{dx} \\ $$
Question Number 29038 Answers: 0 Comments: 1
$${find}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left({at}\right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}. \\ $$
Question Number 29028 Answers: 0 Comments: 0
$${for}\:{t}>\mathrm{0}\:\:{and}\:{f}\left({t}\right)=\:\left(\mathrm{4}\pi{t}\right)^{−\frac{{n}}{\mathrm{2}}} \:\:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}{t}}} \:\:\:{prove}\:{that} \\ $$$$\int_{{R}} {f}_{{t}} \left({x}\right){dx}=\mathrm{1}\:\:\:\forall{t}>\mathrm{0}. \\ $$
Question Number 29027 Answers: 0 Comments: 0
$${find}\:\int\int_{{D}} \:{e}^{−{y}} {sin}\left(\mathrm{2}{xy}\right){dxdy}\:{with}\:{D}=\left[\mathrm{0},\mathrm{1}\right]×\left[\mathrm{0},+\infty\left[\right.\right. \\ $$$${then}\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}^{\mathrm{2}} {t}}{{t}}\:{e}^{−{t}} {dt}\:\:. \\ $$
Question Number 29018 Answers: 0 Comments: 0
$$\int\:\sqrt{\underset{{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\left[\left(−\mathrm{1}\right)^{{n}} \:\mathrm{tan}^{\mathrm{2}{n}} \:\left(\mathrm{2}{x}\right)\right]}\:{dx} \\ $$
Question Number 29003 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{3}} }\:. \\ $$
Question Number 29002 Answers: 0 Comments: 0
$${let}\:{give}\:\mathrm{0}<{p}<\mathrm{1}\:{calculate}\:\:{K}\left({p}\right)=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{pt}} }{\mathrm{1}+{e}^{{t}} }{dt}. \\ $$
Question Number 29001 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\xi{t}\right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}. \\ $$
Question Number 29000 Answers: 0 Comments: 1
$${prove}\:{thst}\:\:\:\:\int_{\mathbb{R}} \:\:\:\:\frac{{e}^{{i}\xi{x}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\:\pi\:{e}^{−\mid\xi\mid} \:\:. \\ $$
Question Number 28999 Answers: 0 Comments: 1
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} }{\sqrt{{t}}}{dt}=\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{ix}} }{\sqrt{{x}}}{dx}. \\ $$
Question Number 28998 Answers: 0 Comments: 0
$${find}\:\int_{\gamma} \:\:\:\:\frac{{e}^{{z}} }{{z}\left({z}+\mathrm{1}\right)}{dz}\:{with}\:\gamma=\left\{{z}\in{C}/\:\mid{z}−\mathrm{1}\mid=\mathrm{2}\right\} \\ $$
Question Number 28997 Answers: 0 Comments: 1
$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\:\mathrm{2}+{e}^{{ix}} \right)}\:. \\ $$
Question Number 28996 Answers: 0 Comments: 0
$${find}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}\right)}{dx}. \\ $$
Pg 299 Pg 300 Pg 301 Pg 302 Pg 303 Pg 304 Pg 305 Pg 306 Pg 307 Pg 308
Terms of Service
Privacy Policy
Contact: info@tinkutara.com