Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 303
Question Number 30476 Answers: 1 Comments: 0
$${find}\:{L}\left({cos}^{\mathrm{2}} {x}\right)\:{and}\:{L}\left({sin}^{\mathrm{2}} {x}\right)\:{L}\:{is}\:{laplace}\:{transform}. \\ $$
Question Number 30475 Answers: 0 Comments: 0
$${let}\:{give}\:{f}_{{n}} \left({x}\right)=\:\int_{\frac{\mathrm{1}}{{n}}} ^{{n}} \:\frac{{sin}\left({xt}\right)}{{t}}\:{e}^{−{t}} \:{dt} \\ $$$$\left.\mathrm{1}\right){find}\:{lim}_{{n}\rightarrow\infty} {f}_{{n}} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{another}\:{form}\:{of}\:{f}_{{n}} \left({x}\right)\:{by}\:{calculating}\:{f}_{{n}} ^{'} \left({x}\right). \\ $$
Question Number 30442 Answers: 3 Comments: 2
$${prove}\:{that}\:\:\:\frac{\mathrm{1}}{{e}}\:\leqslant\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\left({x}−\left[{x}\right]\right)^{\mathrm{2}} } \:{dx}\leqslant\mathrm{1}. \\ $$
Question Number 30441 Answers: 1 Comments: 0
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]^{\mathrm{2}} } =\:\sum_{{n}\geqslant\mathrm{0}} \:{e}^{−{n}^{\mathrm{2}} } . \\ $$
Question Number 30426 Answers: 0 Comments: 0
$${find}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:\:{with}\:{n}\:{integr}. \\ $$
Question Number 30423 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sint}}{{t}^{\alpha} }{dt}\:.\:\alpha{from}\:{R}. \\ $$
Question Number 30413 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\:{A}\left(\alpha\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({t}\right)\:{arctant}}{{t}^{\alpha} }{dt} \\ $$
Question Number 30321 Answers: 0 Comments: 3
$$\int_{−\infty} ^{\infty} \frac{\mathrm{e}^{\mathrm{a}{x}} }{\mathrm{e}^{{x}} +\mathrm{1}}{dx}=? \\ $$
Question Number 30216 Answers: 0 Comments: 0
$${let}\:{I}\left({x}\right)=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dt}}{{x}^{\mathrm{2}} \:+{cos}^{\mathrm{2}} {t}} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{I}\left({x}\right)=\:\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{{x}^{\mathrm{2}} \:+{cos}^{\mathrm{2}} {t}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{I}\left({x}\right). \\ $$
Question Number 30215 Answers: 0 Comments: 0
$${let}\:{give}\:{J}\left({x}\right)=\:\frac{\mathrm{1}}{\pi}\:\int_{\mathrm{0}} ^{\pi} {cos}\left({xcost}\right){dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{J}^{'} \:{and}\:{J}^{''} \:{in}\:{form}\:{of}\:{integrals} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{J}^{'} \left({x}\right)=\frac{−{x}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{sin}^{\mathrm{2}} {t}\:{cos}\left({xcost}\right){dt}\:{and}\:{J}\:{is} \\ $$$${solution}\:{of}\:{d}.{e}.\:\:{xy}^{''} \:+{y}^{'} \:+{xy}=\mathrm{0} \\ $$
Question Number 30185 Answers: 0 Comments: 0
$${let}\:\:{I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{sinx}}{\sqrt{\mathrm{1}+{sinxcosx}}}{dx}\:{and} \\ $$$${J}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{cosx}}{\sqrt{\mathrm{1}+{sinx}\:{cosx}}}\:{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}\:+{J} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{I}\:{and}\:{J}. \\ $$
Question Number 30184 Answers: 0 Comments: 1
$${find}\:\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{2}} \:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){arctanx}\:{dx}\:.\:\left({arctan}={tan}^{−\mathrm{1}} \right). \\ $$
Question Number 30182 Answers: 0 Comments: 2
$${find}\:\int_{\mathrm{2}} ^{\mathrm{3}} \:\:\:\frac{\sqrt{{x}+\mathrm{1}}}{{x}\sqrt{\mathrm{1}−{x}}}{dx}\:. \\ $$
Question Number 30181 Answers: 0 Comments: 0
$${find}\:\:\int\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{3}} \:+{x}^{\mathrm{6}} }\:. \\ $$
Question Number 30180 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{x}\:{sinx}\:{cosx}}{{tan}^{\mathrm{2}} {x}\:+{cotan}^{\mathrm{2}} {x}}{dx}\:.\left({use}\:{the}\:{ch}.{x}=\frac{\pi}{\mathrm{2}}\:−{t}\right). \\ $$
Question Number 30179 Answers: 0 Comments: 1
$${find}\:\:\int\:\:\:\:\frac{{dt}}{\mathrm{1}+{cost}\:+{sint}}\:\:. \\ $$
Question Number 30178 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{cosx}\:{cos}\theta}\:\:{with}\:−\pi<\theta<\pi\:. \\ $$
Question Number 30008 Answers: 0 Comments: 1
$${integrate}\:{w}.{r}.{t}\:{x} \\ $$$$\int\left({e}^{{x}^{\mathrm{2}} } \right){dx} \\ $$
Question Number 29980 Answers: 0 Comments: 0
$${prove}\:{that}\:\gamma=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\left(\frac{\mathrm{1}}{{n}}\:\:−{ln}\left(\mathrm{1}\:+\frac{\mathrm{1}}{{n}}\right)\right) \\ $$$$\left.\mathrm{2}\right){show}\:{that}\:\gamma=\:\sum_{{k}=\mathrm{2}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\:\xi\left({k}\right). \\ $$
Question Number 29976 Answers: 0 Comments: 0
$${prove}\:{that} \\ $$$${ln}\left(\Gamma\left({x}\right)\right)=\:−{lnx}\:−\gamma{x}\:\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\left(\:\:\frac{{x}}{{n}}\:\:−{ln}\left(\:\mathrm{1}+\frac{{x}}{{n}}\right)\right)\:{with}\:{x}>\mathrm{0} \\ $$
Question Number 29975 Answers: 0 Comments: 2
$$\:{let}\:{give}\:\mathrm{0}<\alpha<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\pi\:{coth}\left(\pi\alpha\right)\:−\frac{\mathrm{1}}{\alpha}\:=\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{2}\alpha}{\alpha^{\mathrm{2}} \:+{n}^{\mathrm{2}} }. \\ $$$$\left.\mathrm{2}\right){by}\:{integration}\:{on}\left[\mathrm{0},\mathrm{1}\right]\:{find}\:\prod_{{n}=\mathrm{1}} ^{\infty} \:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right). \\ $$
Question Number 29972 Answers: 0 Comments: 1
$${let}\:{give}\:\mid{x}\mid<\mathrm{1}\:{find}\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{d}\theta}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta}}\:. \\ $$
Question Number 29971 Answers: 0 Comments: 2
$${find}\:{J}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{x}+{e}^{{t}} }\:\:\:\:?. \\ $$
Question Number 29957 Answers: 1 Comments: 0
$$\int\mathrm{3}{x}\mathrm{d}{x} \\ $$
Question Number 29857 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }{dx}\:. \\ $$
Question Number 29856 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left({n}\theta\right)}{\mathrm{2}+\mathrm{3}{cos}\theta}{d}\theta\:.\:\:{n}\:{from}\:{N}. \\ $$
Pg 298 Pg 299 Pg 300 Pg 301 Pg 302 Pg 303 Pg 304 Pg 305 Pg 306 Pg 307
Terms of Service
Privacy Policy
Contact: info@tinkutara.com