Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 303

Question Number 34228    Answers: 0   Comments: 1

find the value of ∫_0 ^1 (x^2 /(1+x^4 ))dx

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 34227    Answers: 1   Comments: 2

calculate ∫_0 ^1 arctan(x^2 )dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left({x}^{\mathrm{2}} \right){dx}\: \\ $$

Question Number 34225    Answers: 1   Comments: 0

find ∫ (dx/(1+x^2 +x^4 ))

$${find}\:\int\:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} } \\ $$

Question Number 34223    Answers: 0   Comments: 0

find ∫ (dx/(x^(2n) −1)) with n integr natural and n≥1 .

$${find}\:\int\:\:\:\frac{{dx}}{{x}^{\mathrm{2}{n}} −\mathrm{1}}\:\:{with}\:{n}\:{integr}\:{natural}\:{and}\:{n}\geqslant\mathrm{1}\:. \\ $$

Question Number 34222    Answers: 0   Comments: 4

let give the sequence of integrals J_n =∫_0 ^∞ x^n e^(−(x^2 /2)) dx 1) prove that J_n =(n−1)J_(n−2) ∀n≥2 2) calculate J_(2p) and J_(2p+1) by using factoriels. 3) prove that ∀n≥1 J_n ^2 ≤J_(n−1) . J_(n+1) . 4)prove that ((2^(2p) (p!)^2 )/((2p)!)) (1/(√(2p+1))) ≤J_0 ≤ ((2^(2p) (p!)^2 )/((2p)!)) (1/(√(2p))) 5) find a equivalent of ((2^(2p) (p!)^2 )/((2p)!)) (p→+∞)

$${let}\:{give}\:{the}\:{sequence}\:{of}\:{integrals} \\ $$$${J}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{x}^{{n}} \:\:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} {dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{J}_{{n}} =\left({n}−\mathrm{1}\right){J}_{{n}−\mathrm{2}} \:\:\:\forall{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{J}_{\mathrm{2}{p}} \:{and}\:{J}_{\mathrm{2}{p}+\mathrm{1}} \:{by}\:{using}\:{factoriels}. \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:\:\forall{n}\geqslant\mathrm{1}\:\:\:{J}_{{n}} ^{\mathrm{2}} \:\:\leqslant{J}_{{n}−\mathrm{1}} \:.\:{J}_{{n}+\mathrm{1}} . \\ $$$$\left.\mathrm{4}\right){prove}\:{that}\:\:\frac{\mathrm{2}^{\mathrm{2}{p}} \left({p}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{p}\right)!}\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}{p}+\mathrm{1}}}\:\leqslant{J}_{\mathrm{0}} \:\leqslant\:\frac{\mathrm{2}^{\mathrm{2}{p}} \:\left({p}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{p}\right)!}\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}{p}}} \\ $$$$\left.\mathrm{5}\right)\:{find}\:{a}\:{equivalent}\:{of}\:\:\frac{\mathrm{2}^{\mathrm{2}{p}} \left({p}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{p}\right)!}\:\:\left({p}\rightarrow+\infty\right) \\ $$

Question Number 34221    Answers: 1   Comments: 1

study the convergence of ∫_0 ^1 ((√(1−x))/x) dx .

$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\sqrt{\mathrm{1}−{x}}}{{x}}\:{dx}\:. \\ $$

Question Number 34220    Answers: 0   Comments: 0

calculate I = ∫_0 ^(π/4) cosx ln(tanx)dx .

$${calculate}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cosx}\:{ln}\left({tanx}\right){dx}\:. \\ $$

Question Number 34219    Answers: 0   Comments: 1

calculate ∫_0 ^(π/4) (dx/(cos^3 x +sin^3 x))

$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{dx}}{{cos}^{\mathrm{3}} {x}\:+{sin}^{\mathrm{3}} {x}} \\ $$

Question Number 34218    Answers: 0   Comments: 0

find ∫(√(tanx))dx 2) calculate ∫_0 ^(π/6) (√(tanx)) dx

$${find}\:\int\sqrt{{tanx}}{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \sqrt{{tanx}}\:{dx} \\ $$

Question Number 34216    Answers: 0   Comments: 0

let give I =∫_0 ^1 ((ln(x+1))/x)dx and J = ∫_0 ^1 ((ln(1−x))/x)dx 1) prove the existence of I and J 2) calculate I +J and 2I +J 3) find I and J .

$${let}\:{give}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({x}+\mathrm{1}\right)}{{x}}{dx}\:{and}\:{J}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{x}\right)}{{x}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{existence}\:{of}\:{I}\:{and}\:{J} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}\:+{J}\:{and}\:\mathrm{2}{I}\:+{J} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{I}\:{and}\:{J}\:. \\ $$

Question Number 34129    Answers: 2   Comments: 2

find the value of ∫_0 ^1 ln(x)ln(1+x)dx .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right){dx}\:. \\ $$

Question Number 34126    Answers: 0   Comments: 0

let give n natural integr not o calculate A_n = ∫_0 ^∞ (dx/(Π_(k=1) ^n (x^2 +k))) .

$${let}\:{give}\:{n}\:{natural}\:{integr}\:{not}\:{o} \\ $$$${calculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\prod_{{k}=\mathrm{1}} ^{{n}} \left({x}^{\mathrm{2}} \:+{k}\right)}\:. \\ $$

Question Number 34110    Answers: 0   Comments: 2

Question Number 34109    Answers: 0   Comments: 0

Question Number 34107    Answers: 0   Comments: 6

Question Number 34021    Answers: 1   Comments: 2

find the value of ∫_0 ^(+∞) ((cos(αx))/((x^2 +1)( x^2 +2)(x^2 +3)))dx 2) calculate ∫_0 ^∞ (dx/((x^2 +1)(x^2 +2)(x^2 +3)))

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\:{x}^{\mathrm{2}} +\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)}{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)} \\ $$

Question Number 33989    Answers: 0   Comments: 0

let f(x)= (e^(−x) /(cosx)) , 2π periodic even developp f at fourier serie .

$${let}\:{f}\left({x}\right)=\:\frac{{e}^{−{x}} }{{cosx}}\:\:\:\:,\:\mathrm{2}\pi\:{periodic}\:{even} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$

Question Number 33987    Answers: 0   Comments: 2

find ∫_(−∞) ^(+∞) ((cos(αx))/((1+x^2 )^3 )) dx with α≥0 .

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:{dx}\:{with}\:\alpha\geqslant\mathrm{0}\:. \\ $$

Question Number 33986    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) ((cos(tx))/((1+x^2 )^2 )) dx with t≥0

$${find}\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({tx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$

Question Number 33984    Answers: 1   Comments: 1

calculate ∫_0 ^1 (1/x)ln(((1+x)/(1−x)))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{{x}}{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right){dx} \\ $$

Question Number 33983    Answers: 0   Comments: 1

find ∫_(1() ^∞ (1/x)ln(((x+1)/(x−1)))dx.

$${find}\:\int_{\mathrm{1}\left(\right.} ^{\infty} \frac{\mathrm{1}}{{x}}{ln}\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right){dx}. \\ $$

Question Number 33980    Answers: 0   Comments: 0

1) let consider f(x)=∣cosx∣ π periodix developp f at fourier serie 2)find the valueof Σ_(n=1) ^∞ (((−1)^n )/(4n^2 −1)) 3)find the value of Σ_(n=1) ^∞ (1/((4n^2 −1)^2 )) .

$$\left.\mathrm{1}\right)\:{let}\:{consider}\:{f}\left({x}\right)=\mid{cosx}\mid\:\pi\:{periodix} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{valueof}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} \:−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$

Question Number 33979    Answers: 0   Comments: 1

we give for t>0 ∫_0 ^∞ ((sinx)/x) e^(−tx) dx =(π/2) −arctant use this result to find the value of ∫_0 ^∞ (((1−e^(−x) )sinx)/x^2 )dx .

$${we}\:{give}\:{for}\:{t}>\mathrm{0}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{{x}}\:{e}^{−{tx}} {dx}\:=\frac{\pi}{\mathrm{2}}\:−{arctant} \\ $$$${use}\:{this}\:{result}\:{to}\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{1}−{e}^{−{x}} \right){sinx}}{{x}^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 33978    Answers: 1   Comments: 2

let f(t) = ∫_0 ^∞ ((sin(x^2 )e^(−tx^2 ) )/x^2 ) dx with t>0 find a simple form of f^′ (t) .

$${let}\:{f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sin}\left({x}^{\mathrm{2}} \right){e}^{−{tx}^{\mathrm{2}} } }{{x}^{\mathrm{2}} }\:{dx}\:\:\:\:\:\:\:{with}\:{t}>\mathrm{0} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}^{'} \left({t}\right)\:. \\ $$

Question Number 33915    Answers: 2   Comments: 3

let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt with x>0 1) find Γ^((n)) (x) with n∈ N^★ 2) calculate Γ(n +(3/2)) for n integr.

$${let}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} \:{dt}\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:\Gamma^{\left({n}\right)} \left({x}\right)\:{with}\:{n}\in\:{N}^{\bigstar} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\Gamma\left({n}\:+\frac{\mathrm{3}}{\mathrm{2}}\right)\:{for}\:{n}\:{integr}. \\ $$

Question Number 33896    Answers: 3   Comments: 0

let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt 1) find Γ(x+1) interms of Γ(x) with x>0 2)calculate Γ(n) for n ∈ N^★ 3)calculate Γ((3/2)) .

$${let}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:\Gamma\left({x}+\mathrm{1}\right)\:{interms}\:{of}\:\Gamma\left({x}\right)\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){calculate}\:\Gamma\left({n}\right)\:{for}\:{n}\:\in\:{N}^{\bigstar} \\ $$$$\left.\mathrm{3}\right){calculate}\:\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\:. \\ $$

  Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303      Pg 304      Pg 305      Pg 306      Pg 307   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com