Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 303
Question Number 33352 Answers: 0 Comments: 1
$${let}\:{give}\:{S}\left({x}\right)=\sum_{{n}\geqslant\mathrm{0}} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\sqrt{{x}+{n}}}\:,{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right){study}\:{the}\:{contnuity}\:,{derivsbility},{limits} \\ $$$${at}\:\mathrm{0}^{+} \:{and}\:+\infty \\ $$$$\left.\mathrm{2}\right)\:{we}\:{give}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}^{\mathrm{2}} } {dt}\:=\frac{\sqrt{\pi}}{\mathrm{2}}\:.{prove}\:{that} \\ $$$$\forall\:{x}>\mathrm{0}\:\:{S}\left({x}\right)=\frac{\mathrm{1}}{\sqrt{\pi}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{tx}} }{\sqrt{{t}}\left(\mathrm{1}+{e}^{−{t}} \right)}{dt}\:. \\ $$
Question Number 33351 Answers: 0 Comments: 1
$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(−{lnx}\right)^{{p}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:={p}!\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{p}+\mathrm{1}} } \\ $$$${p}\:{integr}. \\ $$
Question Number 33350 Answers: 0 Comments: 1
$${prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\alpha{x}\right)}{{chx}}{dx}= \\ $$$$\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\frac{\mathrm{2}{n}+\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} \:+\alpha^{\mathrm{2}} }\:. \\ $$
Question Number 33349 Answers: 0 Comments: 1
$${prove}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{x}\left({x}−{ln}\left({e}^{{x}} −\mathrm{1}\right)\right){dx}=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{3}} } \\ $$
Question Number 33346 Answers: 0 Comments: 0
$${let}\:{a}\:{and}\:{b}\:{from}\:{R}\:/{a}<{b}\:\:{f}\:\:\left[{a},{b}\right]\rightarrow{C}\:{continje} \\ $$$${prove}\:{that}\:\:\forall{n}\:\in{N}\:\:\int_{{a}} ^{{b}} \left(\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}+{k}\right)\right){f}\left({x}\right){dx}=\mathrm{0} \\ $$$$\Rightarrow\:{f}=\mathrm{0} \\ $$
Question Number 33345 Answers: 0 Comments: 0
$$\left.{for}\:{x}\in\right]\mathrm{0},+\infty\left[\:{let}\:\psi\left({x}\right)\:=\:\frac{\Gamma^{'} \left({x}\right)}{\Gamma\left({x}\right)}\right. \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\psi\left({x}\right)\:=−\frac{\mathrm{1}}{{x}}\:−\gamma\:+{x}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}\left({x}+{n}\right)} \\ $$$$\left.\mathrm{2}\right){ptove}\:{that}\:\gamma\:=−\Gamma^{'} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {ln}\left({x}\right){dx}\:=−\gamma\:. \\ $$
Question Number 33344 Answers: 0 Comments: 1
$$\left.{prove}\:{that}\:\:\forall\:\alpha\:\in\right]\mathrm{0},+\infty\left[\right. \\ $$$${lim}_{{n}\rightarrow\infty} \:\int_{\mathrm{0}} ^{{n}} \:\left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} \:{x}^{\alpha−\mathrm{1}} {dx}\:=\Gamma\left(\alpha\right)\:. \\ $$
Question Number 33343 Answers: 0 Comments: 2
$$\left.{prove}\:{that}\:\forall\:\alpha\:\in\right]\mathrm{1},+\infty\left[\right. \\ $$$${lim}_{{n}\rightarrow\infty} \:\:\int_{\mathrm{0}} ^{{n}} \:\left(\mathrm{1}+\frac{{x}}{{n}}\right)^{{n}} \:{e}^{−\alpha{x}} {dx}\:=\:\frac{\mathrm{1}}{\alpha−\mathrm{1}}\:. \\ $$
Question Number 33342 Answers: 0 Comments: 4
$${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{{x}}\left(\mathrm{1}−\left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} \right){dx}\:{and} \\ $$$${J}_{{n}} \:=\:\int_{\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{x}}\left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} {dx}\:\:,{n}\:{integr}\:{not}\:\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{lim}_{} \:{I}_{{n}} \:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}−{e}^{−{x}} }{{x}}{dx} \\ $$$${lim}\:{J}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{−\frac{\mathrm{1}}{{x}}} }{{x}}\:{dx}\:\left({n}\rightarrow\infty\right) \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:\forall{n}\in\:{N}^{\bigstar} \:\:\:{I}_{{n}} \:−{J}_{{n}} \:=\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:−{ln}\left({n}\right) \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}−{e}^{−{x}} \:−{e}^{−\frac{\mathrm{1}}{{x}}} }{{x}}\:=\gamma \\ $$
Question Number 33341 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left({a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of} \\ $$$${A}\left(\theta\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\:{x}^{\mathrm{2}} \:+\mathrm{1}\:−{sin}^{\mathrm{2}} \theta\right)} \\ $$$$\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}}\:. \\ $$
Question Number 33340 Answers: 0 Comments: 1
$${find}\:{a}\:{equivalent}\:{of} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:\sqrt{\mathrm{1}\:+\left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} }\:\:{dx}\:\left({n}\rightarrow\infty\right) \\ $$
Question Number 33339 Answers: 0 Comments: 1
$${find}\:\:{lim}_{{n}\rightarrow\infty} \:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}^{\mathrm{2}} } \:{sin}^{{n}} {xdx}\: \\ $$
Question Number 33338 Answers: 0 Comments: 1
$${find}\:{lim}_{{n}\rightarrow\infty} \:\int_{\mathrm{0}} ^{+\infty} \:{tan}^{{n}} {xdx}\:.\: \\ $$
Question Number 33333 Answers: 0 Comments: 0
$${let}\:{hive}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({sinx}\right)^{{n}} \:{dx} \\ $$$${prove}\:{that}\:\:{I}_{{n}} \:\sim\:\:\sqrt{\frac{\pi}{\mathrm{2}{n}}}\:\left({n}\rightarrow\infty\right) \\ $$$$ \\ $$
Question Number 33334 Answers: 0 Comments: 3
$${decompose}\:{F}\left({x}\right)=\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} \:−\mathrm{1}}\:{imside}\:{R}\left({x}\right)\: \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\:\int_{\mathrm{2}} ^{+\infty} \:\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} \:−\mathrm{1}}\:\:. \\ $$
Question Number 33331 Answers: 0 Comments: 1
$${calcilate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$
Question Number 33329 Answers: 0 Comments: 1
$${find}\:\:\int\:\:\:\frac{{dx}}{\sqrt{\mathrm{4}{x}−{x}^{\mathrm{2}} }}\:. \\ $$
Question Number 33328 Answers: 0 Comments: 1
$${find}\:\:\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\mathrm{4}}{\pi}} \:\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){arctanx}\:{dx} \\ $$
Question Number 33327 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\mathrm{3}\:+{e}^{−{x}} } \\ $$
Question Number 33311 Answers: 0 Comments: 0
$${let}\:\:{f}\left({x}\right)\:=\mid{sinx}\mid\:\:\left(\mathrm{2}\pi\:{periodic}\:{even}\right) \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$
Question Number 33310 Answers: 0 Comments: 0
$${let}\:{consider}\:{the}\:\mathrm{2}\pi\:{periodic}?{function}\:\:{f}\left({x}\right)\:={e}^{{x}} \\ $$$$\left.\mathrm{1}\right)\:{developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \:+\mathrm{1}} \\ $$
Question Number 33297 Answers: 0 Comments: 0
$${find}\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left(\mathrm{1}+{x}\:{sin}\theta\right){d}\theta\:\:\:{with}\:\:\mathrm{0}<{x}<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{sin}\theta\right){d}\theta \\ $$
Question Number 33259 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }\:{dx}\:{with}\:{a}\neq\mathrm{0} \\ $$
Question Number 33258 Answers: 0 Comments: 0
$${if}\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{cosx}}\:=\:\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}\geqslant\mathrm{1}} {a}_{{n}} {cos}\left({nx}\right)\:{calculate}\:{a}_{\mathrm{0}} \\ $$$${and}\:{a}_{{n}} \\ $$
Question Number 33257 Answers: 0 Comments: 1
$${let}\:{g}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right)\:{find}\:{g}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{if}\:{g}\left({x}\right)=\Sigma\:{u}_{{n}} \:{x}^{{n}} \:\:\:{find}\:{the}\:{sequence}\:{u}_{{n}} \\ $$
Question Number 33222 Answers: 0 Comments: 0
$${let}\:{give}\:{n}\:\geqslant\mathrm{3}\:{integr}\:\:{calculate} \\ $$$${I}_{{n}} =\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{x}\:+{x}^{\mathrm{2}} \:+....+{x}^{{n}−\mathrm{1}} } \\ $$
Pg 298 Pg 299 Pg 300 Pg 301 Pg 302 Pg 303 Pg 304 Pg 305 Pg 306 Pg 307
Terms of Service
Privacy Policy
Contact: info@tinkutara.com