Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 302
Question Number 34716 Answers: 0 Comments: 1
$${calculate}\:\int\int_{{w}} {x}\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:\:{dxdy} \\ $$$${w}\:=\left\{\left({x},{y}\right)/\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:\leqslant\mathrm{3}\:\right\}\: \\ $$
Question Number 34715 Answers: 0 Comments: 0
$${calculate}\:\int\int_{\mathrm{0}\leqslant{x}\leqslant{y}\leqslant\mathrm{1}} \:\:\:\frac{{dxdy}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({y}^{\mathrm{2}} \:+\mathrm{3}\right)}\:. \\ $$
Question Number 34714 Answers: 0 Comments: 1
$${calculate}\:\int\int_{{x}^{\mathrm{2}} \:+\mathrm{2}{y}^{\mathrm{2}} \:\leqslant\mathrm{1}} \left({x}^{\mathrm{2}} \:−{y}^{\mathrm{2}} \right){dxdy} \\ $$
Question Number 34713 Answers: 0 Comments: 1
$${let}\:{a}>\mathrm{0}\:\:{calculate}\:\int\int_{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:\leqslant\mathrm{3}} \:\frac{\mathrm{1}}{\mathrm{2}\:+{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{dxdy}. \\ $$
Question Number 34675 Answers: 0 Comments: 0
$${provethat}\:{e}\:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\left(\mathrm{1}−{t}\right)^{{n}} }{{n}!}\:{e}^{{t}} \:{dt}\:. \\ $$
Question Number 34674 Answers: 0 Comments: 0
$${find}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{x}\:{sinx}}{\mathrm{1}+{cos}^{\mathrm{2}} {x}}\:{dx} \\ $$
Question Number 34662 Answers: 0 Comments: 0
$${calculate}\:{I}\left({a}\right)\:\:=\int_{\frac{\mathrm{1}}{{a}}} ^{{a}} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:. \\ $$
Question Number 34661 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{−\left(\mathrm{1}+{t}^{\mathrm{2}} \right){x}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:{find}\:{a}\:{simple}\:{form}\:{of} \\ $$$${f}\left({x}\right) \\ $$
Question Number 34635 Answers: 2 Comments: 4
$${calculate}\:{A}\left(\alpha\right)\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+\alpha{ix}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{ix}\right)\:{dx}\:\:\:\:\left({i}^{\mathrm{2}} \:=−\mathrm{1}\right) \\ $$
Question Number 34633 Answers: 0 Comments: 0
$${let}\:{f}\left(\alpha\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\frac{{arctan}\left(\mathrm{1}+\alpha{xi}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${find}\:{f}\left(\alpha\right)\:. \\ $$
Question Number 34593 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}^{{n}} \right)}{{x}^{\mathrm{2}} \:+{x}\:+\mathrm{1}}\:{dx}\:\:{with}\:{n}\:{integr} \\ $$$${natural} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{\infty} \:\:\:\:\frac{{cos}\left(\:\alpha\:{x}^{\mathrm{2}{n}} \right)}{{x}^{\mathrm{2}} \:+{x}\:+\mathrm{1}}{dx} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left(\pi\:{x}^{\mathrm{3}} \right)}{{x}^{\mathrm{2}} \:+{x}\:+\mathrm{1}}\:{dx} \\ $$
Question Number 34562 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctanx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx} \\ $$
Question Number 34561 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:\:{of}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx} \\ $$
Question Number 34985 Answers: 1 Comments: 0
Question Number 34421 Answers: 0 Comments: 1
$${let}\:{A}\:\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:−{j}}\:\:\:\:{with}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$${extract}\:\:{ReA}\:{and}\:{Im}\left({A}\right)\:{and}\:{calculste}\:{its}\:{values}. \\ $$
Question Number 34320 Answers: 0 Comments: 2
$${calculate}\:\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{1}\:−{i}} \\ $$
Question Number 34316 Answers: 0 Comments: 0
$${find}\:{a}\:{eajivalent}\:{of} \\ $$$${u}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:{e}^{−\frac{{t}}{{n}}} \:\:\:{arcctant}\:{dt}\:. \\ $$
Question Number 34315 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right)\:{find}\:\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{e}^{−{at}} \:−{e}^{−{bt}} }{{t}}{sin}\left({xt}\right){dt} \\ $$$${with}\:{a}>\mathrm{0}\:,{b}>\mathrm{0}\:. \\ $$
Question Number 34314 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} {dt}\: \\ $$$${calculate}\:{f}\left({x}\right)\:. \\ $$
Question Number 34312 Answers: 0 Comments: 1
$${calculate}\:{I}\:\:=\:\int\int_{{D}} {x}^{\mathrm{3}} {dxdy}\:\:\:{on}\:{the}\:{domain} \\ $$$${D}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\mathrm{1}\leqslant{x}\leqslant\mathrm{2}\:,\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} −\mathrm{1}\geqslant\mathrm{0}\right\} \\ $$
Question Number 34308 Answers: 0 Comments: 0
$${let}\:\:{I}\:=\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{\left(\mathrm{1}+{x}\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \:\:−\left(\mathrm{1}+{x}\right)^{−\frac{\mathrm{3}}{\mathrm{4}}} }{{x}}{dx} \\ $$$${prove}\:{that}\:{I}\:{isconvergent}\:{and}\:{find}\:{its}\:{value}\:. \\ $$
Question Number 34298 Answers: 0 Comments: 2
$${let}\:{A}_{\:} =\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {cos}\left[{x}\right]{dx}\:\:{and}\:{B}\:=\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left[{x}\right]} \:{cosxdx} \\ $$$${calculate}\:{A}−{B}\:\:. \\ $$
Question Number 34297 Answers: 1 Comments: 1
$${find}\:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{z}\:{t}^{\mathrm{2}} } {dt}\:\:\:{with}\:{z}={r}\:{e}^{{i}\theta} \:\:\in\:{C}\:. \\ $$
Question Number 34296 Answers: 0 Comments: 3
$${find}\:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{jx}^{\mathrm{2}} } \:\:\:\:{with}\:\:{j}\:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$
Question Number 34295 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{n}\left[{x}\right]} \:{cos}\left({x}\right){dx}\:\:\:{with}\:{n}>\mathrm{0}\: \\ $$
Question Number 34294 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \mid{sinx}\mid{dx}\:\:{with}\:{n}>\mathrm{0} \\ $$
Pg 297 Pg 298 Pg 299 Pg 300 Pg 301 Pg 302 Pg 303 Pg 304 Pg 305 Pg 306
Terms of Service
Privacy Policy
Contact: info@tinkutara.com