Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 302

Question Number 33885    Answers: 0   Comments: 1

developp at integr serie f(x)= ∫_0 ^x sin(t^2 )dt .

$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} {sin}\left({t}^{\mathrm{2}} \right){dt}\:. \\ $$

Question Number 33884    Answers: 0   Comments: 1

let F(x)= ∫_0 ^(π/2) ((arctan(xtant))/(tant)) dt find a simple form of f(x) . 2) find the value of ∫_0 ^(π/2) ((arctan(2tant))/(tant))dt .

$${let}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{arctan}\left({xtant}\right)}{{tant}}\:{dt}\:{find}\:{a}\:{simple} \\ $$$${form}\:{of}\:{f}\left({x}\right)\:. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{arctan}\left(\mathrm{2}{tant}\right)}{{tant}}{dt}\:. \\ $$

Question Number 33883    Answers: 0   Comments: 1

find a simple form of f(x)=∫_0 ^(π/2) ln(1+xsin^2 t)dt with ∣x∣<1.

$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{xsin}^{\mathrm{2}} {t}\right){dt} \\ $$$${with}\:\mid{x}\mid<\mathrm{1}. \\ $$

Question Number 33845    Answers: 0   Comments: 1

let I_n = ∫_0 ^1 ((arctan(1 +n))/(√(1+x^n ))) find lim_(n→+∞) I_n .

$${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left(\mathrm{1}\:+{n}\right)}{\sqrt{\mathrm{1}+{x}^{{n}} }}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} \:. \\ $$

Question Number 33835    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^(+∞) ((cos(πx))/((x^2 +1+i)^2 )) dx

$${find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left(\pi{x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}+{i}\right)^{\mathrm{2}} }\:{dx} \\ $$

Question Number 33787    Answers: 0   Comments: 0

lim_(n→∞) ((1/n) ∫_1 ^n n^(1/x) dx)

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{n}}\:\underset{\mathrm{1}} {\overset{{n}} {\int}}\:{n}^{\frac{\mathrm{1}}{{x}}} \:{dx}\right) \\ $$

Question Number 33823    Answers: 1   Comments: 0

solve : I = ∫_0 ^π (((r−R cosθ) sin θ )/((R^(2 ) + r^2 − 2Rr cos θ)^(3/2) )) dθ for r < R and r > R respectively.

$$\:\:{solve}\::\: \\ $$$$\:{I}\:=\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\left({r}−{R}\:{cos}\theta\right)\:{sin}\:\theta\:}{\left({R}^{\mathrm{2}\:} +\:{r}^{\mathrm{2}} \:−\:\mathrm{2}{Rr}\:{cos}\:\theta\right)^{\mathrm{3}/\mathrm{2}} }\:{d}\theta \\ $$$${for}\:\:\:{r}\:<\:{R} \\ $$$${and}\:{r}\:>\:{R}\:\:{respectively}. \\ $$

Question Number 33759    Answers: 0   Comments: 9

solve : ∫_(−π/2) ^(π/2) ((sin θ )/(√( R^2 + r^2 − 2rR cos θ))) dθ

$${solve}\::\: \\ $$$$\:\underset{−\pi/\mathrm{2}} {\overset{\pi/\mathrm{2}} {\int}}\:\:\frac{{sin}\:\theta\:}{\sqrt{\:{R}^{\mathrm{2}} \:+\:{r}^{\mathrm{2}} \:−\:\mathrm{2}{rR}\:{cos}\:\theta}}\:{d}\theta \\ $$

Question Number 33747    Answers: 0   Comments: 0

Calculate ∫_(−∞) ^(+∞) e^(−x^2 ) dx using Residue theorem

$${Calculate}\:\int_{−\infty} ^{+\infty} {e}^{−{x}^{\mathrm{2}} } {dx}\:\:{using}\:\:{Residue}\:{theorem} \\ $$

Question Number 33744    Answers: 0   Comments: 1

let P_n (x)=(1+x^2 )(1+x^4 )....(1+x^2^n ) calculate lim_(n→+∞) ∫_0 ^x P_n (t)dt with 0<x<1 .

$${let}\:\:{P}_{{n}} \left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)....\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$${calculate}\:\:{lim}_{{n}\rightarrow+\infty} \int_{\mathrm{0}} ^{{x}} \:{P}_{{n}} \left({t}\right){dt}\:\:{with}\:\:\mathrm{0}<{x}<\mathrm{1}\:. \\ $$

Question Number 33737    Answers: 1   Comments: 3

find the value of ∫_0 ^∞ ((cos(xt))/((t^2 + x^2 )^2 )) dt .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({xt}\right)}{\left({t}^{\mathrm{2}} \:+\:{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dt}\:. \\ $$

Question Number 33736    Answers: 2   Comments: 1

find the value of ∫_(−∞) ^(+∞) (x^2 /((1+x +x^2 )^2 ))dx

$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}\:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$

Question Number 33735    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((cos(2x)dx)/((x^2 +1)( 2x^2 +3))) .

$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{cos}\left(\mathrm{2}{x}\right){dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\:\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}\right)}\:. \\ $$

Question Number 33705    Answers: 1   Comments: 1

let α>0 find the fourier transform of f(t) = e^(−a^2 t^2 )

$${let}\:\:\alpha>\mathrm{0}\:\:{find}\:{the}\:{fourier}\:{transform}\:{of} \\ $$$${f}\left({t}\right)\:=\:{e}^{−{a}^{\mathrm{2}} {t}^{\mathrm{2}} } \\ $$

Question Number 33704    Answers: 0   Comments: 1

let f(t) = (1/(a^2 +t^2 )) witha>0 give the fourier transformfor f .

$${let}\:{f}\left({t}\right)\:=\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }\:\:{witha}>\mathrm{0}\:{give}\:{the}\:{fourier} \\ $$$${transformfor}\:{f}\:. \\ $$$$ \\ $$

Question Number 33703    Answers: 0   Comments: 0

give ∫_0 ^∞ ((x e^(−x) )/(1 −e^(−2x) )) sin(πx)dx at form of serie.

$${give}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{x}\:{e}^{−{x}} }{\mathrm{1}\:−{e}^{−\mathrm{2}{x}} }\:{sin}\left(\pi{x}\right){dx}\:\:{at}\:{form}\:{of}\:{serie}. \\ $$

Question Number 33695    Answers: 0   Comments: 1

find lim_(n→+∞) ∫_0 ^∞ (e^(−(x/n)) /(1+x^2 ))dx.

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{e}^{−\frac{{x}}{{n}}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}. \\ $$

Question Number 33694    Answers: 0   Comments: 1

calculate lim_(n→+∞) ∫_0 ^∞ (dx/(x^n +e^x )) .

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{x}^{{n}} \:\:+{e}^{{x}} }\:\:. \\ $$

Question Number 33689    Answers: 2   Comments: 1

∫(x/(x^3 +1))dx

$$\int\frac{{x}}{{x}^{\mathrm{3}} +\mathrm{1}}{dx} \\ $$

Question Number 33677    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((xlnx)/(x−1))dx .

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{xlnx}}{{x}−\mathrm{1}}{dx}\:. \\ $$

Question Number 33619    Answers: 1   Comments: 3

∫x^(5/2) (1−x)^(3/2) dx

$$\int{x}^{\mathrm{5}/\mathrm{2}} \left(\mathrm{1}−{x}\right)^{\mathrm{3}/\mathrm{2}} {dx} \\ $$

Question Number 33599    Answers: 1   Comments: 2

calculatef(a)= ∫_(−a) ^a (dx/((t^2 +x^2 )^(3/2) )) with a>0 .

$${calculatef}\left({a}\right)=\:\:\int_{−{a}} ^{{a}} \:\:\:\:\frac{{dx}}{\left({t}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{with}\:{a}>\mathrm{0}\:. \\ $$

Question Number 33590    Answers: 0   Comments: 1

let α >1 calculate f(α) = ∫_α ^(+∞) ((x^2 −x+1)/((x−1)^2 (x+1)^2 )) dx .

$${let}\:\alpha\:>\mathrm{1}\:\:{calculate}\:{f}\left(\alpha\right)\:=\:\int_{\alpha} ^{+\infty} \:\:\frac{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:{dx}\:. \\ $$

Question Number 33589    Answers: 0   Comments: 1

1) decompose F(x) = (1/((x^2 +4)(x−3)^2 )) 2) calculate ∫_4 ^(+∞) (dx/((x^2 +4)(x−3)^2 )) .

$$\left.\mathrm{1}\right)\:{decompose}\:{F}\left({x}\right)\:=\:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{4}\right)\left({x}−\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{4}} ^{+\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{4}\right)\left({x}−\mathrm{3}\right)^{\mathrm{2}} }\:. \\ $$

Question Number 33587    Answers: 0   Comments: 0

let f(x)=∫_0 ^π ln (x^2 −2x cosθ +1)dθ with ∣x∣<1 give a simple form of f(x).

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} {ln}\:\left({x}^{\mathrm{2}} \:−\mathrm{2}{x}\:{cos}\theta\:+\mathrm{1}\right){d}\theta\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${give}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right). \\ $$

Question Number 33570    Answers: 1   Comments: 3

A = Σ_(n=2) ^(2017) [∫_1 ^n 2tan^(−1) x + sin^(−1) (((2x)/(1 + x^2 ))) dx] B = Π_(n=2) ^(2017) [∫_1 ^n 2tan^(−1) x + sin^(−1) (((2x)/(1 + x^2 ))) dx] A + B = ...

$${A}\:=\:\underset{{n}=\mathrm{2}} {\overset{\mathrm{2017}} {\sum}}\:\left[\underset{\mathrm{1}} {\overset{{n}} {\int}}\:\mathrm{2tan}^{−\mathrm{1}} \:{x}\:+\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\right)\:{dx}\right] \\ $$$${B}\:=\:\underset{{n}=\mathrm{2}} {\overset{\mathrm{2017}} {\prod}}\:\left[\underset{\mathrm{1}} {\overset{{n}} {\int}}\:\mathrm{2tan}^{−\mathrm{1}} \:{x}\:+\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\right)\:{dx}\right] \\ $$$${A}\:+\:{B}\:=\:... \\ $$

  Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303      Pg 304      Pg 305      Pg 306   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com