Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 301

Question Number 31839    Answers: 0   Comments: 1

I = ∫ (√(x + (√(x^2 − 1)))) dx

$${I}\:=\:\int\:\sqrt{{x}\:+\:\sqrt{{x}^{\mathrm{2}} \:−\:\mathrm{1}}}\:{dx} \\ $$

Question Number 31838    Answers: 0   Comments: 0

Given f(x) = (3/(16)) (∫_0 ^1 f(x)dx)x^2 − (9/(10))(∫_0 ^2 f(x)dx)x + 2(∫_0 ^3 f(x)dx) + 4 Solve lim_(t→0) ((2t + (∫_(f(2) + 2) ^(f^(−1) (t)) [f ′(x)]^2 dx))/(1 − cos t cosh 2t cos 3t))

$$\mathrm{Given} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{3}}{\mathrm{16}}\:\left(\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}\left({x}\right){dx}\right){x}^{\mathrm{2}} \:−\:\frac{\mathrm{9}}{\mathrm{10}}\left(\int_{\mathrm{0}} ^{\mathrm{2}} \:{f}\left({x}\right){dx}\right){x}\:+\:\mathrm{2}\left(\int_{\mathrm{0}} ^{\mathrm{3}} \:{f}\left({x}\right){dx}\right)\:+\:\mathrm{4} \\ $$$$\mathrm{Solve} \\ $$$$\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}{t}\:+\:\left(\int_{{f}\left(\mathrm{2}\right)\:+\:\mathrm{2}} ^{{f}^{−\mathrm{1}} \left({t}\right)} \left[{f}\:'\left({x}\right)\right]^{\mathrm{2}} \:{dx}\right)}{\mathrm{1}\:−\:\mathrm{cos}\:{t}\:\mathrm{cosh}\:\mathrm{2}{t}\:\mathrm{cos}\:\mathrm{3}{t}} \\ $$

Question Number 31787    Answers: 2   Comments: 0

∫((4x−3)/(x^2 +3x+8))dx

$$\int\frac{\mathrm{4}{x}−\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{8}}{dx} \\ $$

Question Number 31747    Answers: 0   Comments: 1

let give ∣λ∣<1 and u_n = ∫_0 ^π ((cos(nx))/(1−2λ cosx +λ^2 )) prove that Σ_(n=0) ^∞ u_n is convergent and find its sum .

$${let}\:{give}\:\mid\lambda\mid<\mathrm{1}\:{and}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{cos}\left({nx}\right)}{\mathrm{1}−\mathrm{2}\lambda\:{cosx}\:+\lambda^{\mathrm{2}} } \\ $$$${prove}\:{that}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} \:{is}\:{convergent}\:{and}\:{find}\:{its}\:{sum}\:. \\ $$

Question Number 31517    Answers: 0   Comments: 1

find ∫_(−1) ^1 (dx/((√(1+x)) +(√(1−x)))) .

$${find}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}}\:+\sqrt{\mathrm{1}−{x}}}\:\:. \\ $$

Question Number 31516    Answers: 1   Comments: 1

find ∫ (dx/(x +(√(1+x^2 )))) .

$${find}\:\int\:\:\:\frac{{dx}}{{x}\:+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:. \\ $$

Question Number 31515    Answers: 1   Comments: 1

calculate ∫_0 ^1 (dx/(chx)) .

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{{chx}}\:. \\ $$

Question Number 31514    Answers: 1   Comments: 0

find ∫_0 ^1 ((arctan(2x))/((1+x)^2 ))dx.

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{dx}. \\ $$

Question Number 31513    Answers: 1   Comments: 1

find ∫_0 ^(2π) (dx/(2 +cosx)) .

$${find}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dx}}{\mathrm{2}\:+{cosx}}\:\:. \\ $$

Question Number 31512    Answers: 0   Comments: 1

find lim_(x→∞) ∫_x ^(2x) ((cos((1/t)))/t) dt.

$${find}\:{lim}_{{x}\rightarrow\infty} \:\int_{{x}} ^{\mathrm{2}{x}} \:\:\frac{{cos}\left(\frac{\mathrm{1}}{{t}}\right)}{{t}}\:{dt}. \\ $$

Question Number 31507    Answers: 0   Comments: 0

g is real function continue let f(x)=∫_0 ^x sin(x−t)g(t)dt 1)prove that f^′ (x)= ∫_0 ^x cos(t−x)g(t)dt 2)prove that f is so<ution of the diff.equa. y^(′′) +y =g(x)

$${g}\:{is}\:{real}\:{function}\:{continue}\:{let} \\ $$$${f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:{sin}\left({x}−{t}\right){g}\left({t}\right){dt} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:{f}^{'} \left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} {cos}\left({t}−{x}\right){g}\left({t}\right){dt} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{f}\:{is}\:{so}<{ution}\:{of}\:{the}\:{diff}.{equa}. \\ $$$${y}^{''} \:+{y}\:={g}\left({x}\right) \\ $$

Question Number 31506    Answers: 0   Comments: 1

let f(x)=∫_x ^(2x) ((sht)/t)dt 1) calculate f^′ (x) 2) find lim_(x→0) f(x) .

$${let}\:{f}\left({x}\right)=\int_{{x}} ^{\mathrm{2}{x}} \:\frac{{sht}}{{t}}{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{f}\left({x}\right)\:. \\ $$

Question Number 31505    Answers: 0   Comments: 0

find ∫_a ^b ((1−x^2 )/((1+x^2 )(√(1+x^4 ))))dx with a>1 and b>1.

$$\:{find}\:\:\:\:\int_{{a}} ^{{b}} \:\:\:\:\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}{dx}\:\:{with}\:{a}>\mathrm{1}\:{and}\:{b}>\mathrm{1}. \\ $$

Question Number 31504    Answers: 0   Comments: 1

calculate ∫_0 ^1 (dt/(t +(√(1−t^2 )))) .

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{{t}\:+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:. \\ $$

Question Number 31503    Answers: 0   Comments: 1

find ∫_2 ^(√5) (dt/(t(√(t^2 −1)))) .

$${find}\:\:\int_{\mathrm{2}} ^{\sqrt{\mathrm{5}}} \:\:\:\:\:\frac{{dt}}{{t}\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}\:. \\ $$

Question Number 31501    Answers: 0   Comments: 1

find ∫_0 ^(π/4) ln(1 +2tanx)dx.

$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}\:+\mathrm{2}{tanx}\right){dx}. \\ $$

Question Number 31466    Answers: 0   Comments: 0

let give I_n = ∫_(1/n) ^1 (√(1+t^2 )) dt 1) calculate I_n 2) find lim_(n→∞) I_n .

$${let}\:{give}\:{I}_{{n}} =\:\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow\infty} \:{I}_{{n}} \:\:\:. \\ $$

Question Number 31465    Answers: 0   Comments: 0

find F(α)= ∫_0 ^1 ((arctan(αx))/(1+x^2 )) dx with α ∈ R−{1,−1}

$${find}\:\:{F}\left(\alpha\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:{with}\:\alpha\:\in\:{R}−\left\{\mathrm{1},−\mathrm{1}\right\} \\ $$

Question Number 31464    Answers: 0   Comments: 0

1) find A_n = ∫_0 ^(π/2) e^(−x) cos(nx)dx 2) find S_n = Σ_(k=0) ^n A_k .

$$\left.\mathrm{1}\right)\:{find}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{e}^{−{x}} {cos}\left({nx}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{S}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{A}_{{k}} \:\:. \\ $$

Question Number 31463    Answers: 0   Comments: 0

let give the function f(x)=∫_0 ^π ln(1+xcosθ)dθ with ∣x∣<1 1) find a simple form of f(x) 2)calculate ∫_0 ^π ln(1−cosθ)dθ 3)calculate ∫_0 ^π ln(1+cosθ)dθ.

$${let}\:{give}\:{the}\:{function}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{1}+{xcos}\theta\right){d}\theta\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\pi} \:{ln}\left(\mathrm{1}−{cos}\theta\right){d}\theta \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{1}+{cos}\theta\right){d}\theta. \\ $$

Question Number 31462    Answers: 0   Comments: 0

find ∫_0 ^∞ ((arctan(x+(1/x)))/(1+x^2 ))dx.

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}. \\ $$

Question Number 31460    Answers: 0   Comments: 1

find in terms of n the value of A_n = ∫_0 ^1 Π_(k=1) ^(n−1) (x^2 −2xcos(((kπ)/n)) +1)dx with n from N^★ .

$${find}\:{in}\:{terms}\:{of}\:\:{n}\:{the}\:{value}\:{of} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left({x}^{\mathrm{2}} \:−\mathrm{2}{xcos}\left(\frac{{k}\pi}{{n}}\right)\:+\mathrm{1}\right){dx}\:\:\:{with}\:{n}\:{from}\:{N}^{\bigstar} . \\ $$

Question Number 31459    Answers: 0   Comments: 0

find ∫_0 ^(π/4) ((cost)/(cos^3 t +sin^3 t)) dt.

$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{cost}}{{cos}^{\mathrm{3}} {t}\:+{sin}^{\mathrm{3}} {t}}\:{dt}. \\ $$

Question Number 31458    Answers: 0   Comments: 0

calculate ∫_0 ^(√3) arcsin(((2t)/(1+t^2 )))dt .

$${calculate}\:\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \:\:{arcsin}\left(\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right){dt}\:. \\ $$

Question Number 31419    Answers: 0   Comments: 0

find ∫_0 ^∞ (((1+t^2 )arctant)/(1+t^4 ))dt .

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right){arctant}}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\:. \\ $$

Question Number 31418    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctanx)/(x^2 +x+1)) dx.

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{arctanx}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}\:{dx}. \\ $$

  Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303      Pg 304      Pg 305   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com