Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 301
Question Number 30936 Answers: 0 Comments: 0
$${find}\:\:\:\underset{\mathrm{0}} {\int}^{{a}} \:\:\frac{{sinx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}\:. \\ $$
Question Number 30858 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}\mid\mathrm{x}−\mathrm{4}\mid\mathrm{dx} \\ $$
Question Number 30855 Answers: 1 Comments: 0
$$\int\frac{\mathrm{cosec}^{\mathrm{2}} \left(\mathrm{x}\right)}{\sqrt{\mathrm{cosecx}+\mathrm{cotx}}}\mathrm{dx} \\ $$
Question Number 30798 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 30796 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)} \:{dx}. \\ $$
Question Number 30777 Answers: 0 Comments: 0
$${find}\:{interms}\:{of}\:{n}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}^{} \right)^{{n}} }\:{dx}\:{with}\:{n}\:{from} \\ $$$${N}\:{and}\:{n}\geqslant\mathrm{3}\:. \\ $$
Question Number 30776 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{xdx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:. \\ $$
Question Number 30775 Answers: 1 Comments: 1
$$\left.{let}\alpha\:\in\right]\mathrm{0},\pi\left[\:\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\mathrm{2}\left({cos}\alpha\:+{chx}\right)}\:.\right. \\ $$
Question Number 30774 Answers: 1 Comments: 1
$${find}\:{f}\left({t}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{tx}^{\mathrm{2}} \right){dx}\:\:{with}\:{t}>\mathrm{0} \\ $$
Question Number 30773 Answers: 0 Comments: 1
$${let}\:{a}>\mathrm{0}\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}. \\ $$
Question Number 30769 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} \:+\mathrm{2}{x}\:+\mathrm{2}}}\:. \\ $$
Question Number 30767 Answers: 0 Comments: 1
$${calculate}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}−\sqrt{{x}}}{\mathrm{1}−^{{n}} \sqrt{{x}}}{dx}. \\ $$
Question Number 30766 Answers: 0 Comments: 0
$${find}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{{x}}{\sqrt{{x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+\mathrm{1}}}{dx} \\ $$
Question Number 30765 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}}\:. \\ $$
Question Number 30764 Answers: 0 Comments: 1
$${let}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{e}^{−{t}} {dt}\:\:{with}\:{n}\:{integr}\:{not}\:\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\forall{t}\in\left[\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$$\frac{\mathrm{1}}{\sqrt{{e}}}\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \leqslant\:\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{e}^{−{t}} \:\leqslant\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{then}\:{find}\:{lim}_{{n}\rightarrow\infty\:} {I}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{I}_{{n}+\mathrm{1}\:} =\mathrm{1}−\mathrm{2}\left({n}+\mathrm{1}\right){I}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{I}_{\mathrm{1}} ,{I}_{\mathrm{2}} ,\:{and}\:{I}_{\mathrm{3}} . \\ $$
Question Number 30761 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:{x}^{\mathrm{2}{n}+\mathrm{1}} \:{e}^{−{x}^{\mathrm{2}} } {dx}\:\:\:{with}\:{n}\:{from}\:{N}. \\ $$
Question Number 30760 Answers: 0 Comments: 1
$${find}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left({lnx}\right)^{{n}} \:{dx}\:\:{with}\:{n}\:{fromN} \\ $$
Question Number 30741 Answers: 0 Comments: 0
$${let}\:{give}\:{D}=\:{R}_{+} ^{\mathrm{2}} \:−\left\{\left(\mathrm{0},\mathrm{0}\right)\right\}\:{and}\:\alpha\:{from}\:{R}\:{let} \\ $$$${C}_{\mathrm{1}} =\left\{\left({x},{y}\right)\in\:{D}/\mathrm{0}<{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\mathrm{1}\:\right\} \\ $$$${C}_{\mathrm{2}} \:=\left\{\left({x},{y}\right)\:\in{D}\:/\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \geqslant\mathrm{1}\right\}\:{study}\:{the}\:{convergence}\:{of} \\ $$$${I}=\:\int\int_{{C}_{\mathrm{1}} } \:\:\:\frac{{dxdy}}{\left(\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:\right)^{\alpha} }\:\:{and}\:{J}=\int\int_{{C}_{\mathrm{2}} } \:\:\frac{{dxdy}}{\left(\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:}\:\right)^{\alpha} }\:. \\ $$
Question Number 30737 Answers: 0 Comments: 1
$$\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{ln}\:{x}}{dx} \\ $$
Question Number 30665 Answers: 0 Comments: 0
$${find}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)\:+{sin}\left(\mathrm{2}{x}\right)}\:. \\ $$
Question Number 30585 Answers: 0 Comments: 0
$${find}\:\:{F}_{{n}} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{{n}} }{{e}^{{x}+{n}} \:+\mathrm{1}}{dx}\:. \\ $$
Question Number 30584 Answers: 0 Comments: 0
$${find}\:\:{I}=\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{e}^{−{x}^{\mathrm{2}} } }{{a}^{\mathrm{2}} \:+\left({v}−{x}\right)^{\mathrm{2}} }{dx}. \\ $$
Question Number 30580 Answers: 0 Comments: 1
$${decompose}\:{inside}\:{C}\left[{x}\right]\:{F}=\:\frac{{x}^{{n}} }{{x}^{{m}} \:+\mathrm{1}}\:{with}\:{m}\geqslant{n}+\mathrm{2} \\ $$$${then}\:{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{n}} }{{x}^{{m}} \:+\mathrm{1}}{dx}. \\ $$
Question Number 30575 Answers: 0 Comments: 0
$${find}\:\int\int_{{D}} \:\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){dxdy}\:\:{with} \\ $$$${D}=\left\{\left({x},{y}\right)/\:{x}\leqslant\mathrm{1}\:{and}\:{x}^{\mathrm{2}} \leqslant{y}\leqslant\mathrm{2}\:\right\}. \\ $$
Question Number 30574 Answers: 0 Comments: 0
$${find}\:\int\int_{\left[\mathrm{1},{e}\right]^{\mathrm{2}} } \:\:\:{ln}\left({xy}\right){dxdy}. \\ $$
Question Number 30573 Answers: 0 Comments: 0
$${find}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]×\left[\mathrm{0},\mathrm{1}\right]} \:\:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{y}^{\mathrm{2}} }{dxdy}. \\ $$
Pg 296 Pg 297 Pg 298 Pg 299 Pg 300 Pg 301 Pg 302 Pg 303 Pg 304 Pg 305
Terms of Service
Privacy Policy
Contact: info@tinkutara.com