Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 301
Question Number 34129 Answers: 2 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right){dx}\:. \\ $$
Question Number 34126 Answers: 0 Comments: 0
$${let}\:{give}\:{n}\:{natural}\:{integr}\:{not}\:{o} \\ $$$${calculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\prod_{{k}=\mathrm{1}} ^{{n}} \left({x}^{\mathrm{2}} \:+{k}\right)}\:. \\ $$
Question Number 34110 Answers: 0 Comments: 2
Question Number 34109 Answers: 0 Comments: 0
Question Number 34107 Answers: 0 Comments: 6
Question Number 34021 Answers: 1 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\:{x}^{\mathrm{2}} +\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)}{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)} \\ $$
Question Number 33989 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\:\frac{{e}^{−{x}} }{{cosx}}\:\:\:\:,\:\mathrm{2}\pi\:{periodic}\:{even} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$
Question Number 33987 Answers: 0 Comments: 2
$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:{dx}\:{with}\:\alpha\geqslant\mathrm{0}\:. \\ $$
Question Number 33986 Answers: 0 Comments: 1
$${find}\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({tx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$
Question Number 33984 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{{x}}{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right){dx} \\ $$
Question Number 33983 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{1}\left(\right.} ^{\infty} \frac{\mathrm{1}}{{x}}{ln}\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right){dx}. \\ $$
Question Number 33980 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{let}\:{consider}\:{f}\left({x}\right)=\mid{cosx}\mid\:\pi\:{periodix} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{valueof}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} \:−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$
Question Number 33979 Answers: 0 Comments: 1
$${we}\:{give}\:{for}\:{t}>\mathrm{0}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{{x}}\:{e}^{−{tx}} {dx}\:=\frac{\pi}{\mathrm{2}}\:−{arctant} \\ $$$${use}\:{this}\:{result}\:{to}\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{1}−{e}^{−{x}} \right){sinx}}{{x}^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 33978 Answers: 1 Comments: 2
$${let}\:{f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sin}\left({x}^{\mathrm{2}} \right){e}^{−{tx}^{\mathrm{2}} } }{{x}^{\mathrm{2}} }\:{dx}\:\:\:\:\:\:\:{with}\:{t}>\mathrm{0} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}^{'} \left({t}\right)\:. \\ $$
Question Number 33915 Answers: 2 Comments: 3
$${let}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} \:{dt}\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:\Gamma^{\left({n}\right)} \left({x}\right)\:{with}\:{n}\in\:{N}^{\bigstar} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\Gamma\left({n}\:+\frac{\mathrm{3}}{\mathrm{2}}\right)\:{for}\:{n}\:{integr}. \\ $$
Question Number 33896 Answers: 3 Comments: 0
$${let}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:\Gamma\left({x}+\mathrm{1}\right)\:{interms}\:{of}\:\Gamma\left({x}\right)\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){calculate}\:\Gamma\left({n}\right)\:{for}\:{n}\:\in\:{N}^{\bigstar} \\ $$$$\left.\mathrm{3}\right){calculate}\:\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\:. \\ $$
Question Number 33895 Answers: 3 Comments: 0
$${let}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\Gamma\left({x}\right)\Gamma\left(\mathrm{1}−{x}\right)=\:\frac{\pi}{{sin}\left(\pi{x}\right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}\:. \\ $$
Question Number 33894 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right){let}\:{f}\:\:{R}\rightarrow{C}\:\:\mathrm{2}\pi\:{periodic}\:{even}\:\:/{f}\left({x}\right)={x}\: \\ $$$$\forall\:{x}\in\left[\mathrm{0},\pi\left[\:\:{developp}\:{f}\:{at}\:{fourier}\:{serie}\right.\right. \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$
Question Number 33888 Answers: 0 Comments: 0
$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} {sin}^{\mathrm{2}} {t}}}\:. \\ $$$${with}\:\mid{x}\mid<\mathrm{1}\:. \\ $$
Question Number 33885 Answers: 0 Comments: 1
$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} {sin}\left({t}^{\mathrm{2}} \right){dt}\:. \\ $$
Question Number 33884 Answers: 0 Comments: 1
$${let}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{arctan}\left({xtant}\right)}{{tant}}\:{dt}\:{find}\:{a}\:{simple} \\ $$$${form}\:{of}\:{f}\left({x}\right)\:. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{arctan}\left(\mathrm{2}{tant}\right)}{{tant}}{dt}\:. \\ $$
Question Number 33883 Answers: 0 Comments: 1
$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{xsin}^{\mathrm{2}} {t}\right){dt} \\ $$$${with}\:\mid{x}\mid<\mathrm{1}. \\ $$
Question Number 33845 Answers: 0 Comments: 1
$${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left(\mathrm{1}\:+{n}\right)}{\sqrt{\mathrm{1}+{x}^{{n}} }}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} \:. \\ $$
Question Number 33835 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left(\pi{x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}+{i}\right)^{\mathrm{2}} }\:{dx} \\ $$
Question Number 33787 Answers: 0 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{n}}\:\underset{\mathrm{1}} {\overset{{n}} {\int}}\:{n}^{\frac{\mathrm{1}}{{x}}} \:{dx}\right) \\ $$
Question Number 33823 Answers: 1 Comments: 0
$$\:\:{solve}\::\: \\ $$$$\:{I}\:=\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\left({r}−{R}\:{cos}\theta\right)\:{sin}\:\theta\:}{\left({R}^{\mathrm{2}\:} +\:{r}^{\mathrm{2}} \:−\:\mathrm{2}{Rr}\:{cos}\:\theta\right)^{\mathrm{3}/\mathrm{2}} }\:{d}\theta \\ $$$${for}\:\:\:{r}\:<\:{R} \\ $$$${and}\:{r}\:>\:{R}\:\:{respectively}. \\ $$
Pg 296 Pg 297 Pg 298 Pg 299 Pg 300 Pg 301 Pg 302 Pg 303 Pg 304 Pg 305
Terms of Service
Privacy Policy
Contact: info@tinkutara.com