Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 301

Question Number 34129    Answers: 2   Comments: 2

find the value of ∫_0 ^1 ln(x)ln(1+x)dx .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right){dx}\:. \\ $$

Question Number 34126    Answers: 0   Comments: 0

let give n natural integr not o calculate A_n = ∫_0 ^∞ (dx/(Π_(k=1) ^n (x^2 +k))) .

$${let}\:{give}\:{n}\:{natural}\:{integr}\:{not}\:{o} \\ $$$${calculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\prod_{{k}=\mathrm{1}} ^{{n}} \left({x}^{\mathrm{2}} \:+{k}\right)}\:. \\ $$

Question Number 34110    Answers: 0   Comments: 2

Question Number 34109    Answers: 0   Comments: 0

Question Number 34107    Answers: 0   Comments: 6

Question Number 34021    Answers: 1   Comments: 2

find the value of ∫_0 ^(+∞) ((cos(αx))/((x^2 +1)( x^2 +2)(x^2 +3)))dx 2) calculate ∫_0 ^∞ (dx/((x^2 +1)(x^2 +2)(x^2 +3)))

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\:{x}^{\mathrm{2}} +\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)}{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)} \\ $$

Question Number 33989    Answers: 0   Comments: 0

let f(x)= (e^(−x) /(cosx)) , 2π periodic even developp f at fourier serie .

$${let}\:{f}\left({x}\right)=\:\frac{{e}^{−{x}} }{{cosx}}\:\:\:\:,\:\mathrm{2}\pi\:{periodic}\:{even} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$

Question Number 33987    Answers: 0   Comments: 2

find ∫_(−∞) ^(+∞) ((cos(αx))/((1+x^2 )^3 )) dx with α≥0 .

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:{dx}\:{with}\:\alpha\geqslant\mathrm{0}\:. \\ $$

Question Number 33986    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) ((cos(tx))/((1+x^2 )^2 )) dx with t≥0

$${find}\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({tx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$

Question Number 33984    Answers: 1   Comments: 1

calculate ∫_0 ^1 (1/x)ln(((1+x)/(1−x)))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{{x}}{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right){dx} \\ $$

Question Number 33983    Answers: 0   Comments: 1

find ∫_(1() ^∞ (1/x)ln(((x+1)/(x−1)))dx.

$${find}\:\int_{\mathrm{1}\left(\right.} ^{\infty} \frac{\mathrm{1}}{{x}}{ln}\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right){dx}. \\ $$

Question Number 33980    Answers: 0   Comments: 0

1) let consider f(x)=∣cosx∣ π periodix developp f at fourier serie 2)find the valueof Σ_(n=1) ^∞ (((−1)^n )/(4n^2 −1)) 3)find the value of Σ_(n=1) ^∞ (1/((4n^2 −1)^2 )) .

$$\left.\mathrm{1}\right)\:{let}\:{consider}\:{f}\left({x}\right)=\mid{cosx}\mid\:\pi\:{periodix} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{valueof}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} \:−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$

Question Number 33979    Answers: 0   Comments: 1

we give for t>0 ∫_0 ^∞ ((sinx)/x) e^(−tx) dx =(π/2) −arctant use this result to find the value of ∫_0 ^∞ (((1−e^(−x) )sinx)/x^2 )dx .

$${we}\:{give}\:{for}\:{t}>\mathrm{0}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{{x}}\:{e}^{−{tx}} {dx}\:=\frac{\pi}{\mathrm{2}}\:−{arctant} \\ $$$${use}\:{this}\:{result}\:{to}\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{1}−{e}^{−{x}} \right){sinx}}{{x}^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 33978    Answers: 1   Comments: 2

let f(t) = ∫_0 ^∞ ((sin(x^2 )e^(−tx^2 ) )/x^2 ) dx with t>0 find a simple form of f^′ (t) .

$${let}\:{f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sin}\left({x}^{\mathrm{2}} \right){e}^{−{tx}^{\mathrm{2}} } }{{x}^{\mathrm{2}} }\:{dx}\:\:\:\:\:\:\:{with}\:{t}>\mathrm{0} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}^{'} \left({t}\right)\:. \\ $$

Question Number 33915    Answers: 2   Comments: 3

let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt with x>0 1) find Γ^((n)) (x) with n∈ N^★ 2) calculate Γ(n +(3/2)) for n integr.

$${let}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} \:{dt}\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:\Gamma^{\left({n}\right)} \left({x}\right)\:{with}\:{n}\in\:{N}^{\bigstar} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\Gamma\left({n}\:+\frac{\mathrm{3}}{\mathrm{2}}\right)\:{for}\:{n}\:{integr}. \\ $$

Question Number 33896    Answers: 3   Comments: 0

let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt 1) find Γ(x+1) interms of Γ(x) with x>0 2)calculate Γ(n) for n ∈ N^★ 3)calculate Γ((3/2)) .

$${let}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:\Gamma\left({x}+\mathrm{1}\right)\:{interms}\:{of}\:\Gamma\left({x}\right)\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){calculate}\:\Gamma\left({n}\right)\:{for}\:{n}\:\in\:{N}^{\bigstar} \\ $$$$\left.\mathrm{3}\right){calculate}\:\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\:. \\ $$

Question Number 33895    Answers: 3   Comments: 0

let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt with x>0 1) prove that Γ(x)Γ(1−x)= (π/(sin(πx))) 2) find the value of ∫_0 ^∞ e^(−x^2 ) dx .

$${let}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\Gamma\left({x}\right)\Gamma\left(\mathrm{1}−{x}\right)=\:\frac{\pi}{{sin}\left(\pi{x}\right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}\:. \\ $$

Question Number 33894    Answers: 0   Comments: 1

1)let f R→C 2π periodic even /f(x)=x ∀ x∈[0,π[ developp f at fourier serie 2) calculate Σ_(p=0) ^∞ (1/((2p+1)^2 )) .

$$\left.\mathrm{1}\right){let}\:{f}\:\:{R}\rightarrow{C}\:\:\mathrm{2}\pi\:{periodic}\:{even}\:\:/{f}\left({x}\right)={x}\: \\ $$$$\forall\:{x}\in\left[\mathrm{0},\pi\left[\:\:{developp}\:{f}\:{at}\:{fourier}\:{serie}\right.\right. \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$

Question Number 33888    Answers: 0   Comments: 0

developp at integr serie f(x)= ∫_0 ^(π/2) (dt/(√(1−x^2 sin^2 t))) . with ∣x∣<1 .

$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} {sin}^{\mathrm{2}} {t}}}\:. \\ $$$${with}\:\mid{x}\mid<\mathrm{1}\:. \\ $$

Question Number 33885    Answers: 0   Comments: 1

developp at integr serie f(x)= ∫_0 ^x sin(t^2 )dt .

$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} {sin}\left({t}^{\mathrm{2}} \right){dt}\:. \\ $$

Question Number 33884    Answers: 0   Comments: 1

let F(x)= ∫_0 ^(π/2) ((arctan(xtant))/(tant)) dt find a simple form of f(x) . 2) find the value of ∫_0 ^(π/2) ((arctan(2tant))/(tant))dt .

$${let}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{arctan}\left({xtant}\right)}{{tant}}\:{dt}\:{find}\:{a}\:{simple} \\ $$$${form}\:{of}\:{f}\left({x}\right)\:. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{arctan}\left(\mathrm{2}{tant}\right)}{{tant}}{dt}\:. \\ $$

Question Number 33883    Answers: 0   Comments: 1

find a simple form of f(x)=∫_0 ^(π/2) ln(1+xsin^2 t)dt with ∣x∣<1.

$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{xsin}^{\mathrm{2}} {t}\right){dt} \\ $$$${with}\:\mid{x}\mid<\mathrm{1}. \\ $$

Question Number 33845    Answers: 0   Comments: 1

let I_n = ∫_0 ^1 ((arctan(1 +n))/(√(1+x^n ))) find lim_(n→+∞) I_n .

$${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left(\mathrm{1}\:+{n}\right)}{\sqrt{\mathrm{1}+{x}^{{n}} }}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} \:. \\ $$

Question Number 33835    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^(+∞) ((cos(πx))/((x^2 +1+i)^2 )) dx

$${find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left(\pi{x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}+{i}\right)^{\mathrm{2}} }\:{dx} \\ $$

Question Number 33787    Answers: 0   Comments: 0

lim_(n→∞) ((1/n) ∫_1 ^n n^(1/x) dx)

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{n}}\:\underset{\mathrm{1}} {\overset{{n}} {\int}}\:{n}^{\frac{\mathrm{1}}{{x}}} \:{dx}\right) \\ $$

Question Number 33823    Answers: 1   Comments: 0

solve : I = ∫_0 ^π (((r−R cosθ) sin θ )/((R^(2 ) + r^2 − 2Rr cos θ)^(3/2) )) dθ for r < R and r > R respectively.

$$\:\:{solve}\::\: \\ $$$$\:{I}\:=\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\left({r}−{R}\:{cos}\theta\right)\:{sin}\:\theta\:}{\left({R}^{\mathrm{2}\:} +\:{r}^{\mathrm{2}} \:−\:\mathrm{2}{Rr}\:{cos}\:\theta\right)^{\mathrm{3}/\mathrm{2}} }\:{d}\theta \\ $$$${for}\:\:\:{r}\:<\:{R} \\ $$$${and}\:{r}\:>\:{R}\:\:{respectively}. \\ $$

  Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303      Pg 304      Pg 305   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com