Question and Answers Forum |
IntegrationQuestion and Answers: Page 301 |
I = ∫ (√(x + (√(x^2 − 1)))) dx |
Given f(x) = (3/(16)) (∫_0 ^1 f(x)dx)x^2 − (9/(10))(∫_0 ^2 f(x)dx)x + 2(∫_0 ^3 f(x)dx) + 4 Solve lim_(t→0) ((2t + (∫_(f(2) + 2) ^(f^(−1) (t)) [f ′(x)]^2 dx))/(1 − cos t cosh 2t cos 3t)) |
∫((4x−3)/(x^2 +3x+8))dx |
let give ∣λ∣<1 and u_n = ∫_0 ^π ((cos(nx))/(1−2λ cosx +λ^2 )) prove that Σ_(n=0) ^∞ u_n is convergent and find its sum . |
find ∫_(−1) ^1 (dx/((√(1+x)) +(√(1−x)))) . |
find ∫ (dx/(x +(√(1+x^2 )))) . |
calculate ∫_0 ^1 (dx/(chx)) . |
find ∫_0 ^1 ((arctan(2x))/((1+x)^2 ))dx. |
find ∫_0 ^(2π) (dx/(2 +cosx)) . |
find lim_(x→∞) ∫_x ^(2x) ((cos((1/t)))/t) dt. |
g is real function continue let f(x)=∫_0 ^x sin(x−t)g(t)dt 1)prove that f^′ (x)= ∫_0 ^x cos(t−x)g(t)dt 2)prove that f is so<ution of the diff.equa. y^(′′) +y =g(x) |
let f(x)=∫_x ^(2x) ((sht)/t)dt 1) calculate f^′ (x) 2) find lim_(x→0) f(x) . |
find ∫_a ^b ((1−x^2 )/((1+x^2 )(√(1+x^4 ))))dx with a>1 and b>1. |
calculate ∫_0 ^1 (dt/(t +(√(1−t^2 )))) . |
find ∫_2 ^(√5) (dt/(t(√(t^2 −1)))) . |
find ∫_0 ^(π/4) ln(1 +2tanx)dx. |
let give I_n = ∫_(1/n) ^1 (√(1+t^2 )) dt 1) calculate I_n 2) find lim_(n→∞) I_n . |
find F(α)= ∫_0 ^1 ((arctan(αx))/(1+x^2 )) dx with α ∈ R−{1,−1} |
1) find A_n = ∫_0 ^(π/2) e^(−x) cos(nx)dx 2) find S_n = Σ_(k=0) ^n A_k . |
let give the function f(x)=∫_0 ^π ln(1+xcosθ)dθ with ∣x∣<1 1) find a simple form of f(x) 2)calculate ∫_0 ^π ln(1−cosθ)dθ 3)calculate ∫_0 ^π ln(1+cosθ)dθ. |
find ∫_0 ^∞ ((arctan(x+(1/x)))/(1+x^2 ))dx. |
find in terms of n the value of A_n = ∫_0 ^1 Π_(k=1) ^(n−1) (x^2 −2xcos(((kπ)/n)) +1)dx with n from N^★ . |
find ∫_0 ^(π/4) ((cost)/(cos^3 t +sin^3 t)) dt. |
calculate ∫_0 ^(√3) arcsin(((2t)/(1+t^2 )))dt . |
find ∫_0 ^∞ (((1+t^2 )arctant)/(1+t^4 ))dt . |
calculate ∫_0 ^∞ ((arctanx)/(x^2 +x+1)) dx. |
Pg 296 Pg 297 Pg 298 Pg 299 Pg 300 Pg 301 Pg 302 Pg 303 Pg 304 Pg 305 |