Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 301

Question Number 31839    Answers: 0   Comments: 1

I = ∫ (√(x + (√(x^2 − 1)))) dx

I=x+x21dx

Question Number 31838    Answers: 0   Comments: 0

Given f(x) = (3/(16)) (∫_0 ^1 f(x)dx)x^2 − (9/(10))(∫_0 ^2 f(x)dx)x + 2(∫_0 ^3 f(x)dx) + 4 Solve lim_(t→0) ((2t + (∫_(f(2) + 2) ^(f^(−1) (t)) [f ′(x)]^2 dx))/(1 − cos t cosh 2t cos 3t))

Givenf(x)=316(01f(x)dx)x2910(02f(x)dx)x+2(03f(x)dx)+4Solvelimt02t+(f(2)+2f1(t)[f(x)]2dx)1costcosh2tcos3t

Question Number 31787    Answers: 2   Comments: 0

∫((4x−3)/(x^2 +3x+8))dx

4x3x2+3x+8dx

Question Number 31747    Answers: 0   Comments: 1

let give ∣λ∣<1 and u_n = ∫_0 ^π ((cos(nx))/(1−2λ cosx +λ^2 )) prove that Σ_(n=0) ^∞ u_n is convergent and find its sum .

letgiveλ∣<1andun=0πcos(nx)12λcosx+λ2provethatn=0unisconvergentandfinditssum.

Question Number 31517    Answers: 0   Comments: 1

find ∫_(−1) ^1 (dx/((√(1+x)) +(√(1−x)))) .

find11dx1+x+1x.

Question Number 31516    Answers: 1   Comments: 1

find ∫ (dx/(x +(√(1+x^2 )))) .

finddxx+1+x2.

Question Number 31515    Answers: 1   Comments: 1

calculate ∫_0 ^1 (dx/(chx)) .

calculate01dxchx.

Question Number 31514    Answers: 1   Comments: 0

find ∫_0 ^1 ((arctan(2x))/((1+x)^2 ))dx.

find01arctan(2x)(1+x)2dx.

Question Number 31513    Answers: 1   Comments: 1

find ∫_0 ^(2π) (dx/(2 +cosx)) .

find02πdx2+cosx.

Question Number 31512    Answers: 0   Comments: 1

find lim_(x→∞) ∫_x ^(2x) ((cos((1/t)))/t) dt.

findlimxx2xcos(1t)tdt.

Question Number 31507    Answers: 0   Comments: 0

g is real function continue let f(x)=∫_0 ^x sin(x−t)g(t)dt 1)prove that f^′ (x)= ∫_0 ^x cos(t−x)g(t)dt 2)prove that f is so<ution of the diff.equa. y^(′′) +y =g(x)

gisrealfunctioncontinueletf(x)=0xsin(xt)g(t)dt1)provethatf(x)=0xcos(tx)g(t)dt2)provethatfisso<utionofthediff.equa.y+y=g(x)

Question Number 31506    Answers: 0   Comments: 1

let f(x)=∫_x ^(2x) ((sht)/t)dt 1) calculate f^′ (x) 2) find lim_(x→0) f(x) .

letf(x)=x2xshttdt1)calculatef(x)2)findlimx0f(x).

Question Number 31505    Answers: 0   Comments: 0

find ∫_a ^b ((1−x^2 )/((1+x^2 )(√(1+x^4 ))))dx with a>1 and b>1.

findab1x2(1+x2)1+x4dxwitha>1andb>1.

Question Number 31504    Answers: 0   Comments: 1

calculate ∫_0 ^1 (dt/(t +(√(1−t^2 )))) .

calculate01dtt+1t2.

Question Number 31503    Answers: 0   Comments: 1

find ∫_2 ^(√5) (dt/(t(√(t^2 −1)))) .

find25dttt21.

Question Number 31501    Answers: 0   Comments: 1

find ∫_0 ^(π/4) ln(1 +2tanx)dx.

find0π4ln(1+2tanx)dx.

Question Number 31466    Answers: 0   Comments: 0

let give I_n = ∫_(1/n) ^1 (√(1+t^2 )) dt 1) calculate I_n 2) find lim_(n→∞) I_n .

letgiveIn=1n11+t2dt1)calculateIn2)findlimnIn.

Question Number 31465    Answers: 0   Comments: 0

find F(α)= ∫_0 ^1 ((arctan(αx))/(1+x^2 )) dx with α ∈ R−{1,−1}

findF(α)=01arctan(αx)1+x2dxwithαR{1,1}

Question Number 31464    Answers: 0   Comments: 0

1) find A_n = ∫_0 ^(π/2) e^(−x) cos(nx)dx 2) find S_n = Σ_(k=0) ^n A_k .

1)findAn=0π2excos(nx)dx2)findSn=k=0nAk.

Question Number 31463    Answers: 0   Comments: 0

let give the function f(x)=∫_0 ^π ln(1+xcosθ)dθ with ∣x∣<1 1) find a simple form of f(x) 2)calculate ∫_0 ^π ln(1−cosθ)dθ 3)calculate ∫_0 ^π ln(1+cosθ)dθ.

letgivethefunctionf(x)=0πln(1+xcosθ)dθwithx∣<11)findasimpleformoff(x)2)calculate0πln(1cosθ)dθ3)calculate0πln(1+cosθ)dθ.

Question Number 31462    Answers: 0   Comments: 0

find ∫_0 ^∞ ((arctan(x+(1/x)))/(1+x^2 ))dx.

find0arctan(x+1x)1+x2dx.

Question Number 31460    Answers: 0   Comments: 1

find in terms of n the value of A_n = ∫_0 ^1 Π_(k=1) ^(n−1) (x^2 −2xcos(((kπ)/n)) +1)dx with n from N^★ .

findintermsofnthevalueofAn=01k=1n1(x22xcos(kπn)+1)dxwithnfromN.

Question Number 31459    Answers: 0   Comments: 0

find ∫_0 ^(π/4) ((cost)/(cos^3 t +sin^3 t)) dt.

find0π4costcos3t+sin3tdt.

Question Number 31458    Answers: 0   Comments: 0

calculate ∫_0 ^(√3) arcsin(((2t)/(1+t^2 )))dt .

calculate03arcsin(2t1+t2)dt.

Question Number 31419    Answers: 0   Comments: 0

find ∫_0 ^∞ (((1+t^2 )arctant)/(1+t^4 ))dt .

find0(1+t2)arctant1+t4dt.

Question Number 31418    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctanx)/(x^2 +x+1)) dx.

calculate0arctanxx2+x+1dx.

  Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303      Pg 304      Pg 305   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com