Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 299
Question Number 31101 Answers: 0 Comments: 0
$${let}\:{give}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:{t}^{\mathrm{2}} \:{e}^{−\mathrm{2}{t}^{\mathrm{2}} } {sin}\left(\mathrm{2}\left({x}−{t}\right)\right){dt}\:{calculate} \\ $$$${f}^{''} \:+\mathrm{4}{f}\:\:{then}\:{finf}\:{f}\left({x}\right). \\ $$
Question Number 31100 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cosx}\:−{cos}\left(\mathrm{3}{x}\right)}{{x}}\:{e}^{−\mathrm{2}{x}} {dx}. \\ $$
Question Number 31098 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{1}} ^{\infty} \:\:\frac{{arctan}\left({x}+\mathrm{1}\right)\:−{arctanx}}{{x}^{\mathrm{2}} }{dx}. \\ $$
Question Number 31097 Answers: 0 Comments: 1
$${calculate}\:{interms}\:{of}\:{a}\:{and}\:{b}\:{the}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({bt}\right)\:−{arctan}\left({at}\right)}{{t}}{dt}\:\:{with}\:{a}\:{and}\:{b}>\mathrm{0}. \\ $$
Question Number 31096 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\left({a}+{bcosx}\right)^{\mathrm{2}} }\:{with}\:{a}>{b}>\mathrm{0}\:{then}\:{give}\:{the} \\ $$$${value}\:{of}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\left(\mathrm{2}+{cosx}\right)^{\mathrm{2}} } \\ $$
Question Number 31095 Answers: 0 Comments: 1
$${find}\:{I}_{{n}} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}} \:{e}^{−{xt}} {dt}\:\:\:\:{x}>\mathrm{0}\:{n}\in\:{N}. \\ $$
Question Number 31094 Answers: 0 Comments: 0
$${m}\:{and}\:{n}\:{integrs}\:{and}\:{y}\geqslant\mathrm{0}\:{find}\:\int_{\mathrm{0}} ^{{y}} \:{x}^{{m}} \left({y}−{x}\right)^{{n}} {dx} \\ $$
Question Number 31093 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} } {cos}\left(\mathrm{2}{xy}\right){dx}. \\ $$
Question Number 31092 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }{dx}\:. \\ $$
Question Number 31091 Answers: 0 Comments: 1
$${let}\:\:−\mathrm{1}<{t}<\mathrm{1}\:{find}\:{f}\left({t}\right)=\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{ln}\left(\mathrm{1}+{tcosx}\right)}{{cosx}}{dx} \\ $$
Question Number 31090 Answers: 0 Comments: 1
$${find}\:\int\int_{\mathrm{1}\leqslant{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\mathrm{4}\:{and}\:{y}\geqslant\mathrm{0}} \:\:\:\frac{{dxdy}}{\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}\:. \\ $$
Question Number 31089 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{dy}\:\int_{{y}^{\mathrm{2}} } ^{{y}} \:\:\frac{{ydx}}{{x}\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}\:. \\ $$
Question Number 31088 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{dx}\:\int_{\mathrm{0}} ^{\mathrm{1}−{x}} \:\:{e}^{\frac{{y}−{x}}{{y}+{x}}} \:{dy}. \\ $$
Question Number 31087 Answers: 0 Comments: 0
$${find}\:\int\int\int_{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \:<\mathrm{4}} \:\:\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \right){dxdydz}. \\ $$
Question Number 31086 Answers: 0 Comments: 0
$${find}\:\int\int_{{D}} \left({x}^{\mathrm{4}} \:−{y}^{\mathrm{4}} \right){dxdy}\:{with} \\ $$$${D}=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{1}<{x}^{\mathrm{2}} \:−{y}^{\mathrm{2}} <\mathrm{2}\:,\mathrm{1}<{xy}<\mathrm{2}\:,{x}>\mathrm{0},{y}>\mathrm{0}\right\} \\ $$
Question Number 31084 Answers: 0 Comments: 1
$${find}\:\int\int_{{D}} \:\:\frac{{dxdy}}{\left({x}+{y}\right)^{\mathrm{4}} }\:\:{with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /{x}\geqslant\mathrm{1},{y}\geqslant\mathrm{1},{x}+{y}\leqslant\mathrm{4}\right\} \\ $$
Question Number 31083 Answers: 0 Comments: 1
$${calculate}\:{by}\:{two}\:{methods}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}\:{dt}}{\mathrm{1}+{x}^{\mathrm{2}} {tan}^{\mathrm{2}} {t}} \\ $$$${then}\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{t}\:{cotant}\:{dt}\:. \\ $$$$ \\ $$
Question Number 31082 Answers: 0 Comments: 0
$${calculate}\:{by}\:{two}\:{methods}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dxdy}}{\left(\mathrm{1}+{y}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} {y}\right)} \\ $$$${then}\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}. \\ $$
Question Number 31081 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\infty} {dx}\:\int_{{x}} ^{+\infty} \:{e}^{−{y}^{\mathrm{2}} {dy}} \:\:. \\ $$
Question Number 31080 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{px}} {dx}\:\int_{\mathrm{0}} ^{{a}} \:\:\frac{{cos}\left({xt}\right)}{\sqrt{{a}^{\mathrm{2}} \:−{t}^{\mathrm{2}} }}{dt}\:{with}\:{a}>\mathrm{0}\:,{p}>\mathrm{0} \\ $$
Question Number 31079 Answers: 0 Comments: 0
$${calculate}\:\:\int\int_{\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\:\mathrm{0}\leqslant{y}\leqslant\mathrm{2}} \:\:\:{x}^{\mathrm{2}} {y}\:{e}^{{xy}} {dxdxy}. \\ $$
Question Number 31078 Answers: 0 Comments: 0
$${find}\:\int\int_{\mathrm{0}\leqslant{x}\leqslant\mathrm{3}\:{and}\:{x}\leqslant{y}\leqslant\mathrm{4}{x}−{x}^{\mathrm{2}} } \:\:\:\left({x}^{\mathrm{2}} \:+\mathrm{2}{y}\right){dxdy}. \\ $$
Question Number 31077 Answers: 0 Comments: 1
$${calculate}\:\int\int_{\mathrm{0}<{x}<\mathrm{1}{and}\:\mathrm{0}<{y}<{x}^{\mathrm{2}} } \:\frac{{y}}{\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}{dxdy}. \\ $$
Question Number 31076 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} \:\:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{1}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:. \\ $$
Question Number 31075 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{sin}\theta}{{cos}^{\mathrm{2}} \theta\:+\mathrm{2}\:{sin}^{\mathrm{2}} \theta}\:{d}\theta\:. \\ $$
Question Number 31074 Answers: 0 Comments: 1
$${find}\:\:\int_{{a}} ^{{b}} \:\sqrt{\left({b}−{x}\right)\left({x}−{a}\right)}\:{dx}\:{with}\:{a}<{b}\:.{then}\:{find}\: \\ $$$$\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \sqrt{\left(\sqrt{\mathrm{2}}\:−{x}\right)\left({x}−\mathrm{1}\right)}\:{dx}. \\ $$
Pg 294 Pg 295 Pg 296 Pg 297 Pg 298 Pg 299 Pg 300 Pg 301 Pg 302 Pg 303
Terms of Service
Privacy Policy
Contact: info@tinkutara.com