Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 299
Question Number 35228 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{px}} \:\:\:\frac{{sin}\left({qx}\right)}{\sqrt{{x}}}{dx}\:\:{with}\:{p}>\mathrm{0}\:{and}\:{q}>\mathrm{0} \\ $$
Question Number 35226 Answers: 0 Comments: 4
$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\:\frac{{dx}}{{a}\:{sin}^{\mathrm{2}} {x}\:\:+{cos}^{\mathrm{2}} {x}} \\ $$$${with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{g}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{sin}^{\mathrm{2}} {x}}{\left({a}\:{sin}^{\mathrm{2}} {x}\:+{cos}^{\mathrm{2}} {x}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 35225 Answers: 0 Comments: 4
$$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{dt}}{{a}\:{cos}^{\mathrm{2}} {t}\:+\:{sin}^{\mathrm{2}} {t}}\:{with}\:{a}\neq\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{g}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}^{\mathrm{2}} {t}}{\left({a}\:{cos}^{\mathrm{2}} {t}\:+{sin}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }{dt}\: \\ $$
Question Number 35224 Answers: 1 Comments: 0
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{\mathrm{1}+\mathrm{2}{cost}}{\mathrm{5}+\mathrm{4}{cost}}{dt} \\ $$
Question Number 35218 Answers: 0 Comments: 0
$${prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:=\frac{\pi}{{sin}\left(\pi{a}\right)} \\ $$$${that}\:{we}\:{know}\:\mathrm{0}<{a}<\mathrm{1}\:. \\ $$
Question Number 35217 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{sin}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$
Question Number 35215 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cosx}\:+{cos}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$
Question Number 35214 Answers: 0 Comments: 0
$${let}\:{a}>\mathrm{0}\:\:{b}\:\in{C}\:{and}\:{Re}\left({b}\right)>\mathrm{0} \\ $$$${cslculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{iax}} }{{x}−{ib}}{dx}\:\:{and}\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{iax}} }{{x}+{ib}}{dx} \\ $$
Question Number 35213 Answers: 0 Comments: 0
$${find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left(\lambda{x}^{\mathrm{2}} \right){dx}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{sin}\left(\lambda{x}^{\mathrm{2}} \right){dx}\:{with}\:\lambda>\mathrm{0}\:. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{\mathrm{2}} \right){dx}\:{and}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{2}} \right){dx}\left(\:{integrals}\:{of}\:{fresnel}\right) \\ $$
Question Number 35212 Answers: 0 Comments: 0
$${prove}\:{by}\:{using}\:{series}\:{only}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{\mathrm{2}} \right){dx}=\:\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}} \right){dx}. \\ $$
Question Number 35202 Answers: 1 Comments: 0
$$\:\int^{} \:\boldsymbol{{e}}^{\mathrm{3}\boldsymbol{{x}}} \sqrt{\mathrm{1}−\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}} }\boldsymbol{{dx}} \\ $$$$\boldsymbol{{plzz}}\:\boldsymbol{{help}} \\ $$
Question Number 35186 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{x}\:{dx}}{\mathrm{3}\:+{cosx}} \\ $$
Question Number 35139 Answers: 1 Comments: 2
Question Number 35117 Answers: 1 Comments: 0
$$\int\frac{\mathrm{2}{x}+\mathrm{3}}{{x}^{\mathrm{4}} −\mathrm{3}{x}−\mathrm{2}}{dx} \\ $$
Question Number 35101 Answers: 2 Comments: 1
$${Find}\:{volume}\:{enclosed}\:{by} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{{c}^{\mathrm{2}} }=\mathrm{1}\:\:. \\ $$
Question Number 35062 Answers: 0 Comments: 0
$${calculate}\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{4}} \:+\mathrm{1}\right)^{{n}} } \\ $$$${with}\:{n}\:{integr}\:{natural}\:. \\ $$
Question Number 35061 Answers: 2 Comments: 1
$${find}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{x}^{\mathrm{2}} \:+\mathrm{3}}{\left({x}^{\mathrm{4}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 35060 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{sinx}\:{ln}\left({cosx}\right){dx} \\ $$
Question Number 35059 Answers: 2 Comments: 2
$${find}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\frac{{dx}}{{cosx}\:+{sinx}} \\ $$
Question Number 35058 Answers: 1 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{cos}^{\mathrm{2}} {t}\right)^{\mathrm{3}} } \\ $$
Question Number 35055 Answers: 1 Comments: 2
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$
Question Number 35054 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{xdx}}{\mathrm{2}\:+{cosx}} \\ $$
Question Number 35053 Answers: 0 Comments: 0
$${let}\:{v}\left({x}\right)={ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right) \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Question Number 35049 Answers: 1 Comments: 1
$${let}\:{A}_{{n}} \:=\:\int_{\frac{\mathrm{1}}{{n}}} ^{{n}} \:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){arctanx}\:{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$
Question Number 35048 Answers: 0 Comments: 0
$${find}\:\int\:\:\:\:\:\frac{{dx}}{{cos}\left({sinx}\right)} \\ $$
Question Number 35046 Answers: 0 Comments: 0
$${find}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{\pi} \:{ln}\left(\:\mathrm{1}+{x}\:{sin}^{\mathrm{2}} {t}\right){dt}\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{sin}^{\mathrm{2}} {t}\right){dt} \\ $$
Pg 294 Pg 295 Pg 296 Pg 297 Pg 298 Pg 299 Pg 300 Pg 301 Pg 302 Pg 303
Terms of Service
Privacy Policy
Contact: info@tinkutara.com