Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 299

Question Number 34285    Answers: 0   Comments: 3

find ∫ (dx/((1+chx)^2 )) 2) calculate ∫_0 ^1 (dx/((1+chx)^2 ))

$${find}\:\:\int\:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{chx}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{chx}\right)^{\mathrm{2}} } \\ $$

Question Number 34284    Answers: 0   Comments: 1

find ∫ (dt/(sin(2t)))

$${find}\:\:\int\:\:\:\frac{{dt}}{{sin}\left(\mathrm{2}{t}\right)} \\ $$

Question Number 34283    Answers: 0   Comments: 2

calculate ∫_0 ^(π/2) (dx/(cos^4 x +sin^4 x))

$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{dx}}{{cos}^{\mathrm{4}} {x}\:+{sin}^{\mathrm{4}} {x}} \\ $$

Question Number 34282    Answers: 0   Comments: 1

find ∫_(π/6) ^(π/3) (dx/(cos(x) sin(x)))

$${find}\:\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\:\:\frac{{dx}}{{cos}\left({x}\right)\:{sin}\left({x}\right)} \\ $$

Question Number 34281    Answers: 0   Comments: 0

calculate ∫_1 ^(√3) ((x−1)/(x^2 (x^2 +1)))dx

$${calculate}\:\:\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \:\:\:\:\:\:\frac{{x}−\mathrm{1}}{{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx}\: \\ $$

Question Number 34280    Answers: 0   Comments: 0

find ∫ ((ln(x+x^2 ))/x^2 )dx

$${find}\:\:\:\:\int\:\:\:\frac{{ln}\left({x}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 34279    Answers: 0   Comments: 0

find ∫_1 ^(+∞) (((−1)^([x]) )/x) dx .

$${find}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{{x}}\:{dx}\:. \\ $$

Question Number 34278    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ (2 +(t+3)ln(((t+2)/(t+4))))dt .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{2}\:\:+\left({t}+\mathrm{3}\right){ln}\left(\frac{{t}+\mathrm{2}}{{t}+\mathrm{4}}\right)\right){dt}\:. \\ $$

Question Number 34277    Answers: 0   Comments: 1

calculate A_n =∫_0 ^∞ (dx/((x+1)(x+2)....(x+n))) n integr≥2 .

$${calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)....\left({x}+{n}\right)} \\ $$$${n}\:{integr}\geqslant\mathrm{2}\:. \\ $$

Question Number 34276    Answers: 0   Comments: 0

nature of ∫_0 ^∞ (dx/(1+x^3 sin^2 x)) ?

$${nature}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{3}} {sin}^{\mathrm{2}} {x}}\:? \\ $$

Question Number 34274    Answers: 0   Comments: 0

calculate ∫_2 ^(+∞) ((4x)/(x^4 −1))dx .

$${calculate}\:\:\int_{\mathrm{2}} ^{+\infty} \:\:\frac{\mathrm{4}{x}}{{x}^{\mathrm{4}} −\mathrm{1}}{dx}\:. \\ $$

Question Number 34273    Answers: 0   Comments: 0

calculate ∫_0 ^∞ (e^(arctanx) /(1+x^2 ))dx .

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{e}^{{arctanx}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 34271    Answers: 0   Comments: 0

find lim_(n→+∞) ∫_0 ^∞ ((arctan(nx))/(n(1+x^2 )))dx

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({nx}\right)}{{n}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$

Question Number 34270    Answers: 0   Comments: 0

let give A_n = ∫_0 ^∞ (dx/((1+x^3 )^n )) 1) calculate A_1 2) for n≥2 find a relation between A_(n+1) and A_n 3) find the value of A_n .

$${let}\:{give}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{{n}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{for}\:{n}\geqslant\mathrm{2}\:{find}\:{a}\:{relation}\:{between}\:{A}_{{n}+\mathrm{1}} \:{and}\:{A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:{A}_{{n}} . \\ $$

Question Number 34269    Answers: 0   Comments: 0

calculate I(λ) =∫_0 ^∞ (dx/((1+x^2 )(1+x^λ )))

$${calculate}\:{I}\left(\lambda\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\lambda} \right)} \\ $$

Question Number 34268    Answers: 0   Comments: 0

calculate I = ∫_(−(π/2)) ^(π/2) ln(1+sinx)dx

$${calculate}\:{I}\:=\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{sinx}\right){dx} \\ $$

Question Number 34266    Answers: 0   Comments: 0

1) find the relation between ∫_x ^(+∞) e^(−t^2 ) dt and ∫_x ^(+∞) (e^(−t^2 ) /t^2 )dt 2) guive a equivalent to ∫_x ^(+∞) e^(−t^2 ) dt when x→+∞

$$\left.\mathrm{1}\right)\:{find}\:{the}\:{relation}\:{between}\:\int_{{x}} ^{+\infty} \:{e}^{−{t}^{\mathrm{2}} } {dt}\:\:{and} \\ $$$$\int_{{x}} ^{+\infty} \:\:\:\frac{{e}^{−{t}^{\mathrm{2}} } }{{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{2}\right)\:{guive}\:{a}\:{equivalent}\:{to}\:\int_{{x}} ^{+\infty} \:{e}^{−{t}^{\mathrm{2}} } {dt}\:{when}\:{x}\rightarrow+\infty \\ $$

Question Number 34265    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ e^(−2t) sin([t]) dt .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\mathrm{2}{t}} \:{sin}\left(\left[{t}\right]\right)\:{dt}\:\:. \\ $$

Question Number 34264    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ e^(−2[t]) sint dt

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\mathrm{2}\left[{t}\right]} {sint}\:{dt} \\ $$

Question Number 34262    Answers: 0   Comments: 0

find the nature of ∫_2 ^(+∞) ((√(1+t^2 +t^4 )) −t ^3 (√(t^3 +at)))dt a∈R .

$${find}\:{the}\:{nature}\:{of}\:\int_{\mathrm{2}} ^{+\infty} \left(\sqrt{\mathrm{1}+{t}^{\mathrm{2}} +{t}^{\mathrm{4}} \:}\:\:−{t}\:\:^{\mathrm{3}} \sqrt{{t}^{\mathrm{3}} +{at}}\right){dt} \\ $$$${a}\in{R}\:. \\ $$

Question Number 34261    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ ((t−sint)/t^a )dt with a real.

$${study}\:{the}\:{convergence}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{t}−{sint}}{{t}^{{a}} }{dt}\:{with}\:{a}\:{real}. \\ $$

Question Number 34260    Answers: 0   Comments: 0

let give a>0 1) find the value of F(a) = ∫_0 ^∞ ((lnt)/(t^2 +a^2 ))dt 2) find the value of G(a)=∫_0 ^∞ ((aln(t))/((t^2 +a^2 )^2 ))dt 3) find the value of ∫_0 ^∞ ((ln(t))/((t^2 +3)^2 ))dt

$${let}\:{give}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:{F}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{lnt}}{{t}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{G}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{aln}\left({t}\right)}{\left({t}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({t}\right)}{\left({t}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dt} \\ $$

Question Number 34257    Answers: 0   Comments: 0

find f(x)= ∫_1 ^x (dt/(t(√(1+t^2 )))) 2) calculate I =∫_1 ^(+∞) (dt/(t(√(1+t^2 ))))

$${find}\:{f}\left({x}\right)=\:\int_{\mathrm{1}} ^{{x}} \:\:\:\:\frac{{dt}}{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}\:=\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\frac{{dt}}{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }} \\ $$

Question Number 34255    Answers: 0   Comments: 0

find g(x)= ∫_0 ^∞ ((ln(1+xt^2 ))/t^2 ) dt 2) calculate ∫_0 ^∞ ((ln(1+3t^2 ))/t^2 )dt .

$${find}\:\:{g}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }\:{dt} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+\mathrm{3}{t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt}\:. \\ $$

Question Number 34254    Answers: 0   Comments: 0

find I(x)= ∫_0 ^1 ((ln(1+xt^2 ))/t^2 )dt .

$${find}\:{I}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt}\:\:. \\ $$

Question Number 34253    Answers: 0   Comments: 0

let F(x)= ∫_0 ^x ((ln(1+t^2 ))/t^2 )dt 1) calculate F(x) 2) find the value of ∫_0 ^∞ ((ln(1+t^2 ))/t^2 )dt

$$\:{let}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\:\frac{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{F}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt} \\ $$

  Pg 294      Pg 295      Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com