Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 298
Question Number 31505 Answers: 0 Comments: 0
$$\:{find}\:\:\:\:\int_{{a}} ^{{b}} \:\:\:\:\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}{dx}\:\:{with}\:{a}>\mathrm{1}\:{and}\:{b}>\mathrm{1}. \\ $$
Question Number 31504 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{{t}\:+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:. \\ $$
Question Number 31503 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{2}} ^{\sqrt{\mathrm{5}}} \:\:\:\:\:\frac{{dt}}{{t}\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}\:. \\ $$
Question Number 31501 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}\:+\mathrm{2}{tanx}\right){dx}. \\ $$
Question Number 31466 Answers: 0 Comments: 0
$${let}\:{give}\:{I}_{{n}} =\:\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow\infty} \:{I}_{{n}} \:\:\:. \\ $$
Question Number 31465 Answers: 0 Comments: 0
$${find}\:\:{F}\left(\alpha\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:{with}\:\alpha\:\in\:{R}−\left\{\mathrm{1},−\mathrm{1}\right\} \\ $$
Question Number 31464 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{find}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{e}^{−{x}} {cos}\left({nx}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{S}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{A}_{{k}} \:\:. \\ $$
Question Number 31463 Answers: 0 Comments: 0
$${let}\:{give}\:{the}\:{function}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{1}+{xcos}\theta\right){d}\theta\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\pi} \:{ln}\left(\mathrm{1}−{cos}\theta\right){d}\theta \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{1}+{cos}\theta\right){d}\theta. \\ $$
Question Number 31462 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}. \\ $$
Question Number 31460 Answers: 0 Comments: 1
$${find}\:{in}\:{terms}\:{of}\:\:{n}\:{the}\:{value}\:{of} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left({x}^{\mathrm{2}} \:−\mathrm{2}{xcos}\left(\frac{{k}\pi}{{n}}\right)\:+\mathrm{1}\right){dx}\:\:\:{with}\:{n}\:{from}\:{N}^{\bigstar} . \\ $$
Question Number 31459 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{cost}}{{cos}^{\mathrm{3}} {t}\:+{sin}^{\mathrm{3}} {t}}\:{dt}. \\ $$
Question Number 31458 Answers: 0 Comments: 0
$${calculate}\:\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \:\:{arcsin}\left(\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right){dt}\:. \\ $$
Question Number 31419 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right){arctant}}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\:. \\ $$
Question Number 31418 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{arctanx}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}\:{dx}. \\ $$
Question Number 31415 Answers: 0 Comments: 0
$${let}\:\mathrm{0}<{x}<\mathrm{1}\:\:{find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} {lnt}\:.{ln}\left(\mathrm{1}−{t}\right){dt}. \\ $$
Question Number 31414 Answers: 0 Comments: 0
$${find}\:\:\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}\:} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:\:+\sqrt{{x}+\mathrm{1}}}\:. \\ $$
Question Number 31296 Answers: 0 Comments: 11
$${find}\:\:\int_{\mathrm{0}} ^{+\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1}\:. \\ $$
Question Number 31107 Answers: 0 Comments: 2
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{{n}} }\:\:{with}\:{n}>\mathrm{1}. \\ $$
Question Number 31106 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}^{\mathrm{2}} } ={lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:. \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:\frac{\mathrm{1}}{\sqrt{\pi}}\:={lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}....\left(\mathrm{2}{n}−\mathrm{3}\right)}{\mathrm{2}.\mathrm{4}.\mathrm{6}....\left(\mathrm{2}{n}−\mathrm{2}\right)}\:\sqrt{{n}} \\ $$$$\left({wallis}\:{formula}\right). \\ $$
Question Number 31105 Answers: 0 Comments: 1
$${prove}\:{that}\:\int_{\mathrm{0}} ^{{x}} \:\:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:=\frac{\sqrt{\pi}}{\mathrm{2}}\:−\frac{{e}^{−{x}^{\mathrm{2}} } }{\sqrt{\pi}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}^{\mathrm{2}} {t}^{\mathrm{2}} } }{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:{with}\:{x}>\mathrm{0} \\ $$
Question Number 31104 Answers: 0 Comments: 1
$${find}\:\:\:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} \:+\mathrm{2}{x}−\mathrm{1}\right)} {dx}\:. \\ $$
Question Number 31103 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({x}\:−\frac{{a}}{{x}}\right)^{\mathrm{2}} } {dx}\:\:{with}\:\:{a}\geqslant\mathrm{0}\:. \\ $$
Question Number 31102 Answers: 0 Comments: 2
$${find}\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{lnx}}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{3}} }\:. \\ $$
Question Number 31101 Answers: 0 Comments: 0
$${let}\:{give}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:{t}^{\mathrm{2}} \:{e}^{−\mathrm{2}{t}^{\mathrm{2}} } {sin}\left(\mathrm{2}\left({x}−{t}\right)\right){dt}\:{calculate} \\ $$$${f}^{''} \:+\mathrm{4}{f}\:\:{then}\:{finf}\:{f}\left({x}\right). \\ $$
Question Number 31100 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cosx}\:−{cos}\left(\mathrm{3}{x}\right)}{{x}}\:{e}^{−\mathrm{2}{x}} {dx}. \\ $$
Question Number 31098 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{1}} ^{\infty} \:\:\frac{{arctan}\left({x}+\mathrm{1}\right)\:−{arctanx}}{{x}^{\mathrm{2}} }{dx}. \\ $$
Pg 293 Pg 294 Pg 295 Pg 296 Pg 297 Pg 298 Pg 299 Pg 300 Pg 301 Pg 302
Terms of Service
Privacy Policy
Contact: info@tinkutara.com