Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 298

Question Number 31505    Answers: 0   Comments: 0

find ∫_a ^b ((1−x^2 )/((1+x^2 )(√(1+x^4 ))))dx with a>1 and b>1.

$$\:{find}\:\:\:\:\int_{{a}} ^{{b}} \:\:\:\:\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}{dx}\:\:{with}\:{a}>\mathrm{1}\:{and}\:{b}>\mathrm{1}. \\ $$

Question Number 31504    Answers: 0   Comments: 1

calculate ∫_0 ^1 (dt/(t +(√(1−t^2 )))) .

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{{t}\:+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:. \\ $$

Question Number 31503    Answers: 0   Comments: 1

find ∫_2 ^(√5) (dt/(t(√(t^2 −1)))) .

$${find}\:\:\int_{\mathrm{2}} ^{\sqrt{\mathrm{5}}} \:\:\:\:\:\frac{{dt}}{{t}\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}\:. \\ $$

Question Number 31501    Answers: 0   Comments: 1

find ∫_0 ^(π/4) ln(1 +2tanx)dx.

$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}\:+\mathrm{2}{tanx}\right){dx}. \\ $$

Question Number 31466    Answers: 0   Comments: 0

let give I_n = ∫_(1/n) ^1 (√(1+t^2 )) dt 1) calculate I_n 2) find lim_(n→∞) I_n .

$${let}\:{give}\:{I}_{{n}} =\:\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow\infty} \:{I}_{{n}} \:\:\:. \\ $$

Question Number 31465    Answers: 0   Comments: 0

find F(α)= ∫_0 ^1 ((arctan(αx))/(1+x^2 )) dx with α ∈ R−{1,−1}

$${find}\:\:{F}\left(\alpha\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:{with}\:\alpha\:\in\:{R}−\left\{\mathrm{1},−\mathrm{1}\right\} \\ $$

Question Number 31464    Answers: 0   Comments: 0

1) find A_n = ∫_0 ^(π/2) e^(−x) cos(nx)dx 2) find S_n = Σ_(k=0) ^n A_k .

$$\left.\mathrm{1}\right)\:{find}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{e}^{−{x}} {cos}\left({nx}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{S}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{A}_{{k}} \:\:. \\ $$

Question Number 31463    Answers: 0   Comments: 0

let give the function f(x)=∫_0 ^π ln(1+xcosθ)dθ with ∣x∣<1 1) find a simple form of f(x) 2)calculate ∫_0 ^π ln(1−cosθ)dθ 3)calculate ∫_0 ^π ln(1+cosθ)dθ.

$${let}\:{give}\:{the}\:{function}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{1}+{xcos}\theta\right){d}\theta\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\pi} \:{ln}\left(\mathrm{1}−{cos}\theta\right){d}\theta \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{1}+{cos}\theta\right){d}\theta. \\ $$

Question Number 31462    Answers: 0   Comments: 0

find ∫_0 ^∞ ((arctan(x+(1/x)))/(1+x^2 ))dx.

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}. \\ $$

Question Number 31460    Answers: 0   Comments: 1

find in terms of n the value of A_n = ∫_0 ^1 Π_(k=1) ^(n−1) (x^2 −2xcos(((kπ)/n)) +1)dx with n from N^★ .

$${find}\:{in}\:{terms}\:{of}\:\:{n}\:{the}\:{value}\:{of} \\ $$$${A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left({x}^{\mathrm{2}} \:−\mathrm{2}{xcos}\left(\frac{{k}\pi}{{n}}\right)\:+\mathrm{1}\right){dx}\:\:\:{with}\:{n}\:{from}\:{N}^{\bigstar} . \\ $$

Question Number 31459    Answers: 0   Comments: 0

find ∫_0 ^(π/4) ((cost)/(cos^3 t +sin^3 t)) dt.

$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{cost}}{{cos}^{\mathrm{3}} {t}\:+{sin}^{\mathrm{3}} {t}}\:{dt}. \\ $$

Question Number 31458    Answers: 0   Comments: 0

calculate ∫_0 ^(√3) arcsin(((2t)/(1+t^2 )))dt .

$${calculate}\:\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \:\:{arcsin}\left(\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right){dt}\:. \\ $$

Question Number 31419    Answers: 0   Comments: 0

find ∫_0 ^∞ (((1+t^2 )arctant)/(1+t^4 ))dt .

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right){arctant}}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\:. \\ $$

Question Number 31418    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctanx)/(x^2 +x+1)) dx.

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{arctanx}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}\:{dx}. \\ $$

Question Number 31415    Answers: 0   Comments: 0

let 0<x<1 find f(x)=∫_0 ^x lnt .ln(1−t)dt.

$${let}\:\mathrm{0}<{x}<\mathrm{1}\:\:{find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} {lnt}\:.{ln}\left(\mathrm{1}−{t}\right){dt}. \\ $$

Question Number 31414    Answers: 0   Comments: 0

find ∫_0 ^((√3) ) (dx/(x^2 +(√(x+1)))) .

$${find}\:\:\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}\:} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:\:+\sqrt{{x}+\mathrm{1}}}\:. \\ $$

Question Number 31296    Answers: 0   Comments: 11

find ∫_0 ^(+∞) (dx/((1+x^2 )^n )) with n integr and n≥1 .

$${find}\:\:\int_{\mathrm{0}} ^{+\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1}\:. \\ $$

Question Number 31107    Answers: 0   Comments: 2

calculate ∫_(−∞) ^(+∞) (dx/((x^2 +x+1)^n )) with n>1.

$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{{n}} }\:\:{with}\:{n}>\mathrm{1}. \\ $$

Question Number 31106    Answers: 0   Comments: 0

prove that ∫_0 ^∞ e^(−x^2 ) =lim_(n→+∞) ∫_0 ^∞ (dx/((1+x^2 )^n )) . 2) prove that (1/(√π)) =lim_(n→∞) ((1.3.5....(2n−3))/(2.4.6....(2n−2))) (√n) (wallis formula).

$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}^{\mathrm{2}} } ={lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:. \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:\frac{\mathrm{1}}{\sqrt{\pi}}\:={lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}....\left(\mathrm{2}{n}−\mathrm{3}\right)}{\mathrm{2}.\mathrm{4}.\mathrm{6}....\left(\mathrm{2}{n}−\mathrm{2}\right)}\:\sqrt{{n}} \\ $$$$\left({wallis}\:{formula}\right). \\ $$

Question Number 31105    Answers: 0   Comments: 1

prove that ∫_0 ^x e^(−t^2 ) dt =((√π)/2) −(e^(−x^2 ) /(√π)) ∫_0 ^∞ (e^(−x^2 t^2 ) /(1+t^2 )) dt with x>0

$${prove}\:{that}\:\int_{\mathrm{0}} ^{{x}} \:\:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:=\frac{\sqrt{\pi}}{\mathrm{2}}\:−\frac{{e}^{−{x}^{\mathrm{2}} } }{\sqrt{\pi}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}^{\mathrm{2}} {t}^{\mathrm{2}} } }{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:{with}\:{x}>\mathrm{0} \\ $$

Question Number 31104    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) e^(−(x^2 +2x−1)) dx .

$${find}\:\:\:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} \:+\mathrm{2}{x}−\mathrm{1}\right)} {dx}\:. \\ $$

Question Number 31103    Answers: 0   Comments: 0

find ∫_0 ^∞ e^(−(x −(a/x))^2 ) dx with a≥0 .

$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({x}\:−\frac{{a}}{{x}}\right)^{\mathrm{2}} } {dx}\:\:{with}\:\:{a}\geqslant\mathrm{0}\:. \\ $$

Question Number 31102    Answers: 0   Comments: 2

find ∫_0 ^(+∞) ((lnx)/(x^2 +a^2 ))dx 2) find the value of ∫_0 ^∞ ((lnx)/((x^2 +a^2 )^3 )) .

$${find}\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{lnx}}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{3}} }\:. \\ $$

Question Number 31101    Answers: 0   Comments: 0

let give f(x)= ∫_0 ^x t^2 e^(−2t^2 ) sin(2(x−t))dt calculate f^(′′) +4f then finf f(x).

$${let}\:{give}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:{t}^{\mathrm{2}} \:{e}^{−\mathrm{2}{t}^{\mathrm{2}} } {sin}\left(\mathrm{2}\left({x}−{t}\right)\right){dt}\:{calculate} \\ $$$${f}^{''} \:+\mathrm{4}{f}\:\:{then}\:{finf}\:{f}\left({x}\right). \\ $$

Question Number 31100    Answers: 0   Comments: 1

find ∫_0 ^∞ ((cosx −cos(3x))/x) e^(−2x) dx.

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cosx}\:−{cos}\left(\mathrm{3}{x}\right)}{{x}}\:{e}^{−\mathrm{2}{x}} {dx}. \\ $$

Question Number 31098    Answers: 0   Comments: 2

find the value of ∫_1 ^∞ ((arctan(x+1) −arctanx)/x^2 )dx.

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{1}} ^{\infty} \:\:\frac{{arctan}\left({x}+\mathrm{1}\right)\:−{arctanx}}{{x}^{\mathrm{2}} }{dx}. \\ $$

  Pg 293      Pg 294      Pg 295      Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com