Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 298

Question Number 32741    Answers: 0   Comments: 0

find ∫_0 ^1 ((ln(t^2 +2t cosx +1))/t)dt .

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left({t}^{\mathrm{2}} \:+\mathrm{2}{t}\:{cosx}\:+\mathrm{1}\right)}{{t}}{dt}\:. \\ $$

Question Number 32740    Answers: 0   Comments: 2

find∫_0 ^∞ ((ln(x^2 +t^2 ))/(1+t^2 ))dt

$${find}\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$

Question Number 32739    Answers: 0   Comments: 1

let f(x)=∫_0 ^∞ (e^(−t) /(1+xt))dt calculate f^((n)) (0).

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{t}} }{\mathrm{1}+{xt}}{dt} \\ $$$${calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$

Question Number 32737    Answers: 1   Comments: 0

let give 0≤x≤1 calculate ∫_0 ^∞ ((arctan((x/t)))/(1+t^2 )) dt

$${let}\:{give}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\left(\frac{{x}}{{t}}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$

Question Number 32736    Answers: 0   Comments: 0

let o≤x≤1 find ∫_0 ^x ((lnt)/(t^2 −1))dt

$${let}\:{o}\leqslant{x}\leqslant\mathrm{1}\:\:{find}\:\int_{\mathrm{0}} ^{{x}} \:\frac{{lnt}}{{t}^{\mathrm{2}} −\mathrm{1}}{dt}\: \\ $$

Question Number 32733    Answers: 0   Comments: 0

prove that Σ_(n=0) ^∞ (1/((n!)^2 )) =(1/(2π)) ∫_0 ^(2π) e^(2cosx) dx .

$${prove}\:{that}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}!\right)^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{2}\pi}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:{e}^{\mathrm{2}{cosx}} {dx}\:. \\ $$

Question Number 32731    Answers: 0   Comments: 0

1) prove that ∫_0 ^1 ((arctant)/t)dt=−∫_0 ^1 ((lnt)/(1+t^2 ))dt 2) find ∫_0 ^1 ((arctant)/t)dt at form of serie

$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctant}}{{t}}{dt}=−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{lnt}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctant}}{{t}}{dt}\:{at}\:{form}\:{of}\:{serie} \\ $$

Question Number 32729    Answers: 0   Comments: 0

find lim_(n→∞) ∫_0 ^n (cos((x/n)))^n^2 dx.

$${find}\:{lim}_{{n}\rightarrow\infty} \:\int_{\mathrm{0}} ^{{n}} \left({cos}\left(\frac{{x}}{{n}}\right)\right)^{{n}^{\mathrm{2}} } \:{dx}. \\ $$

Question Number 32724    Answers: 0   Comments: 0

let A_n = ∫_0 ^n (√(1+(1−(x/n))^n )) dt. find a rquivalent of A_n .

$${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \sqrt{\mathrm{1}+\left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} }\:{dt}. \\ $$$${find}\:{a}\:{rquivalent}\:{of}\:{A}_{{n}} . \\ $$

Question Number 32721    Answers: 0   Comments: 0

let x>0 and f(x)=∫_x ^(+∞) (e^(−t) /t)dt 1)calculate f^′ (x) 2) find lim_(x→+∞) xf(x) and lim_(x→0^+ ) xf(x).

$${let}\:{x}>\mathrm{0}\:{and}\:{f}\left({x}\right)=\int_{{x}} ^{+\infty} \:\:\frac{{e}^{−{t}} }{{t}}{dt} \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{x}\rightarrow+\infty} {xf}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } {xf}\left({x}\right). \\ $$

Question Number 32720    Answers: 0   Comments: 0

find ∫_(−∞) ^(+∞) (dt/(1 +(t+2i)^2 )) .

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dt}}{\mathrm{1}\:+\left({t}+\mathrm{2}{i}\right)^{\mathrm{2}} }\:. \\ $$

Question Number 32719    Answers: 0   Comments: 0

cslculate ∫_0 ^∞ (t −[t])e^(−3t) dt .

$${cslculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\left({t}\:−\left[{t}\right]\right){e}^{−\mathrm{3}{t}} {dt}\:. \\ $$

Question Number 32718    Answers: 0   Comments: 0

find ∫_0 ^∞ arctan(2x) (e^(−tx) /x) dc with t>0 2) calculate ∫_0 ^∞ ((arctan(2x))/x) e^(−x) dx.

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:{arctan}\left(\mathrm{2}{x}\right)\:\frac{{e}^{−{tx}} }{{x}}\:{dc}\:{with}\:{t}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{{x}}\:{e}^{−{x}} \:{dx}. \\ $$

Question Number 32717    Answers: 0   Comments: 0

finf ∫_0 ^(+∞) (dx/(1+x^2 +x^4 ))

$${finf}\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} } \\ $$

Question Number 32716    Answers: 1   Comments: 0

find ∫_0 ^(2π) ((cos^2 x)/(1+3sin^2 x))dx .

$${find}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{cos}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{3}{sin}^{\mathrm{2}} {x}}{dx}\:. \\ $$

Question Number 32715    Answers: 0   Comments: 1

calculate ∫_(−∞) ^(+∞) (dt/((1+it)(1+it^2 ))) .

$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{it}\right)\left(\mathrm{1}+{it}^{\mathrm{2}} \right)}\:\:. \\ $$

Question Number 32714    Answers: 0   Comments: 1

calculate ∫_1 ^(+∞) (dt/(t^2 (√(1+t^2 )))) .

$${calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:. \\ $$

Question Number 32712    Answers: 0   Comments: 1

calculate ∫_0 ^(π/2) (dt/(1+a cos^2 t)) .

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{a}\:{cos}^{\mathrm{2}} {t}}\:. \\ $$

Question Number 32722    Answers: 0   Comments: 0

find ∫_0 ^∞ (dx/(1+x^3 )) .

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{3}} }\:. \\ $$

Question Number 32705    Answers: 0   Comments: 1

let give f(x)= ∫_0 ^∞ ln(1 +(x/t^2 ))dt with ∣x∣<1 find a simple form of f(x).

$${let}\:{give}\:\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:{ln}\left(\mathrm{1}\:+\frac{{x}}{{t}^{\mathrm{2}} }\right){dt}\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right). \\ $$

Question Number 32704    Answers: 0   Comments: 0

find ∫_0 ^∞ (((x+1)(√x))/(2+x^2 ))dx.

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left({x}+\mathrm{1}\right)\sqrt{{x}}}{\mathrm{2}+{x}^{\mathrm{2}} }{dx}. \\ $$

Question Number 32675    Answers: 1   Comments: 1

Question Number 32708    Answers: 0   Comments: 1

let give f(x)=∫_0 ^(π/2) ((ln(1+xtant))/(tant))dt find a simple form of f(x) 2)calculate ∫_0 ^(π/2) ((ln(1+2tant))/(tant))dt .

$${let}\:{give}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{ln}\left(\mathrm{1}+{xtant}\right)}{{tant}}{dt} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{ln}\left(\mathrm{1}+\mathrm{2}{tant}\right)}{{tant}}{dt}\:. \\ $$

Question Number 32627    Answers: 0   Comments: 1

plzz help ne differentiate between ∫sin(2x)= −(1/2)cox(2x)+c is not change to ∫2sin(x)cos(x) but ∫_b ^a sin(2x)= is change to ∫_b ^a 2sin(x)cos(x)

$${plzz}\:{help}\:{ne}\:{differentiate}\: \\ $$$${between} \\ $$$$\int{sin}\left(\mathrm{2}{x}\right)=\:−\frac{\mathrm{1}}{\mathrm{2}}{cox}\left(\mathrm{2}{x}\right)+{c}\: \\ $$$${is}\:{not}\:{change}\:{to}\:\int\mathrm{2}{sin}\left({x}\right){cos}\left({x}\right) \\ $$$${but}\:\underset{{b}} {\overset{{a}} {\int}}{sin}\left(\mathrm{2}{x}\right)=\:{is}\:{change}\:{to} \\ $$$$\underset{{b}} {\overset{{a}} {\int}}\mathrm{2}{sin}\left({x}\right){cos}\left({x}\right) \\ $$

Question Number 32484    Answers: 0   Comments: 2

∫_1 ^2 ∫_0 ^1 ((ln(x+y))/((x+y))) dx dy

$$ \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}+{y}\right)}{\left({x}+{y}\right)}\:{dx}\:{dy} \\ $$

Question Number 32483    Answers: 0   Comments: 2

calculate ∫_0 ^(2π) (dx/(1+2cosx)) .

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}{cosx}}\:. \\ $$

  Pg 293      Pg 294      Pg 295      Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com