Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 297
Question Number 33175 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$
Question Number 33172 Answers: 0 Comments: 0
$${find}\:\:\int\:\:\:\:\frac{{dx}}{{x}\:+\sqrt{{x}^{\mathrm{2}} \:−\mathrm{3}{x}+\mathrm{2}}}\:. \\ $$
Question Number 33170 Answers: 0 Comments: 1
$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mid{sinx}\mid}{{x}}\:{dx}\:{is}\:{divergent}. \\ $$
Question Number 33169 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}\:{sin}^{\mathrm{2}} {x}}\:\:. \\ $$
Question Number 33166 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} }\:\:. \\ $$
Question Number 33155 Answers: 0 Comments: 4
$$\mathrm{Evaluate} \\ $$$$\int_{−\infty} ^{\infty} \:\mathrm{3}{x}^{\mathrm{2}} \left({x}^{\mathrm{3}} \:+\:\mathrm{1}\right)^{\mathrm{2}} \:{e}^{−{x}^{\mathrm{6}} \:−\:\mathrm{2}{x}^{\mathrm{3}} } \:{dx} \\ $$
Question Number 33130 Answers: 0 Comments: 0
$${find}\:\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}+{x}\:{cos}\theta}{{x}^{\mathrm{2}} \:+\mathrm{2}{x}\:{cos}\theta\:+\mathrm{1}}\:{dx}\:. \\ $$
Question Number 33129 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right){find}\:{the}\:{value}\:{of}\:\:\:{u}_{{n}} =\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left({nx}\right)}{\mathrm{4}\:+{x}^{\mathrm{2}} }\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{nature}\:{of}\:\Sigma\:{u}_{{n}} \:. \\ $$
Question Number 33128 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\:\mathrm{1}+{x}^{\mathrm{4}} \right)}\:. \\ $$
Question Number 33120 Answers: 1 Comments: 0
$${let}\:{give}\:\alpha>\mathrm{0}\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\sqrt{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+\alpha{x}\right)}}\:. \\ $$
Question Number 33119 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{{n}} }{{e}^{{t}} \:−\mathrm{1}}\:{dt}\:{by}\:{using}\:\xi\left({x}\right)\:{for}\:{n}\:{integr} \\ $$$$\xi\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:{with}\:{x}>\mathrm{1}\:. \\ $$
Question Number 33069 Answers: 0 Comments: 0
$${by}\:\:{using}\:{residus}\:{theorem}\:{prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}\:{dt}\:=\:\frac{\pi}{{sin}\left(\pi{a}\right)}\:{with}\:\:\mathrm{0}<{a}<\mathrm{1}\:. \\ $$
Question Number 33028 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−\left[{t}\right]} }{{t}+\mathrm{1}}{dt}\:\:. \\ $$
Question Number 33027 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{5}} }{dx}. \\ $$
Question Number 33026 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}+{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{6}} }\:{dx}\:. \\ $$
Question Number 33009 Answers: 2 Comments: 1
$${help}\:!\:!\:! \\ $$$$\int\:\frac{{dx}}{{csc}\left({x}\right)−\mathrm{1}}\:=\:? \\ $$$$ \\ $$$$\left[\:{my}\:{way}\:\right] \\ $$$$\int\left(\:\frac{{dx}}{\frac{\mathrm{1}}{{sinx}}\:−\:\mathrm{1}}\:\right) \\ $$$$=\int\frac{{sinx}}{\mathrm{1}−{sinx}}\:{dx} \\ $$$$=−\int\:\frac{{sinx}−\mathrm{1}+\mathrm{1}}{{sinx}−\mathrm{1}}\:{dx} \\ $$$$=−\int\mathrm{1}+\frac{\mathrm{1}}{{sinx}−\mathrm{1}}\:{dx} \\ $$$$=−\left(\int\mathrm{1}{dx}+\int\frac{{sinx}+\mathrm{1}}{\left({sinx}−\mathrm{1}\right)\left({sinx}+\mathrm{1}\right)}\:{dx}\right) \\ $$$$=−\left({x}+{C}−\int\frac{{sinx}+\mathrm{1}}{\mathrm{1}−{sin}^{\mathrm{2}} {x}}\:{dx}\right) \\ $$$$=−\left({x}+{C}−\int\:\frac{{sinx}}{{cos}^{\mathrm{2}} {x}}\:{dx}−\int\:\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}\:{dx}\right) \\ $$$$=−\left({x}+{C}+\int\left({cosx}\right)^{−\mathrm{2}} {dcosx}−\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}{dx}\right) \\ $$$$=−\left({x}−\left({cosx}\right)^{−\mathrm{1}} +{C}−\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}{dx}\right) \\ $$$$...{and}\:{I}\:{can}'{t}\:{solve}\:{the}\:\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}{dx} \\ $$$$ \\ $$$${oh}\:{i}\:{just}\:{found}\:{that}\:{is}\:{tanx}+{C} \\ $$
Question Number 32994 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{cos}\left(\lambda{x}\right)}{{x}^{\mathrm{2}} }\:{dx}\:{with}\:\lambda>\mathrm{0}\:. \\ $$
Question Number 32993 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\lambda{x}} \:\frac{{sinx}}{\sqrt{{x}}}\:{dx}\:\:{wih}\:\lambda>\mathrm{0}\:. \\ $$
Question Number 33125 Answers: 0 Comments: 0
$${let}\:{give}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{cos}\left({nx}\right){dx}}{\mathrm{1}−\mathrm{2}\lambda{cosx}\:+\lambda^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\lambda\:{u}_{{n}+\mathrm{2}} \:−\left(\mathrm{1}+\lambda^{\mathrm{2}} \right){u}_{{n}+\mathrm{1}} \:+\lambda\:{u}_{{n}} =\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{ptove}\:{that}\:\Sigma\:{u}_{{n}} \:{is}\:{convergent}\:{and}\:{find}\:{its}\:{sum} \\ $$
Question Number 32958 Answers: 0 Comments: 1
Question Number 32951 Answers: 2 Comments: 1
$${Evaluate} \\ $$$$\int\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{6}} +\mathrm{1}}{dx}\:\:\:\:\:\left[{W}.{B}.{H}.{S}\:\mathrm{2018}\right] \\ $$
Question Number 32939 Answers: 1 Comments: 1
$$\left.\mathrm{1}\right)\:{study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{p}} }{\mathrm{1}+{x}}\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{p}\rightarrow\infty} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{p}} }{\mathrm{1}+{x}}{dx}\:. \\ $$
Question Number 32928 Answers: 2 Comments: 2
$$\boldsymbol{{plz}}\:\boldsymbol{{help}} \\ $$$${Evalute} \\ $$$$ \\ $$$$\underset{\pi/\mathrm{3}\:} {\overset{\pi/\mathrm{4}} {\int}}\:\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\sqrt{\mathrm{1}−{cosx}}}{dx} \\ $$
Question Number 32789 Answers: 0 Comments: 0
$$\mid\underset{{a}} {\overset{{b}} {\int}}{f}\left({x}\right){dx}\leqslant\mid\underset{{a}} {\overset{{b}} {\int}}\mid{f}\left({x}\right)\mid{dx}\mid \\ $$
Question Number 32785 Answers: 1 Comments: 0
$$\int\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{4}}{\mathrm{7}{x}^{\mathrm{2}} −\mathrm{9}{x}+\mathrm{2}}{dx} \\ $$
Question Number 32763 Answers: 1 Comments: 1
Pg 292 Pg 293 Pg 294 Pg 295 Pg 296 Pg 297 Pg 298 Pg 299 Pg 300 Pg 301
Terms of Service
Privacy Policy
Contact: info@tinkutara.com