Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 297
Question Number 35685 Answers: 1 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:{x}\:{artan}\left(\mathrm{2}{x}+\mathrm{1}\right){dx} \\ $$
Question Number 35684 Answers: 1 Comments: 1
$${calculate}\:{I}\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{\mathrm{2}{t}} \:{ln}\left(\mathrm{1}+{e}^{{t}} \right){dt} \\ $$
Question Number 35683 Answers: 1 Comments: 1
$${find}\:\int\:\:{x}^{\mathrm{2}} {ln}\left({x}^{\mathrm{6}} −\mathrm{1}\right){dx} \\ $$
Question Number 35682 Answers: 1 Comments: 2
$${let}\:{F}\left({x}\right)\:=\:\int_{{x}\:+\mathrm{1}} ^{{x}^{\mathrm{2}} \:+\mathrm{1}} \:\:\:{arctan}\left(\mathrm{1}+{t}\right){dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{\partial{F}}{\partial{x}}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{F}\left({x}\right)\:. \\ $$
Question Number 35681 Answers: 1 Comments: 1
$${find}\:\:\int\:{arctan}\left({x}\right){dx} \\ $$
Question Number 35680 Answers: 0 Comments: 0
$${by}\:{using}\:{residus}\:{theorem}\:{calculate} \\ $$$${W}_{{n}} \:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{cos}^{\mathrm{2}{n}} {t}\:{dt}\:\:\left(\:\:{wallis}\:{integal}\right)\:{n}\:{integr} \\ $$$${natural}\:. \\ $$
Question Number 35678 Answers: 0 Comments: 1
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{tx}^{\mathrm{2}} } \:{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}\:{with}\:{t}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{existencte}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{f}^{'} \left({t}\right) \\ $$$$\left.\mathrm{3}\right){find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right). \\ $$
Question Number 35677 Answers: 0 Comments: 2
$${find}\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:{e}^{−\mathrm{2}{t}} {cos}\left({t}+\frac{\pi}{\mathrm{4}}\right){dx}. \\ $$
Question Number 35676 Answers: 0 Comments: 1
$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:{ch}^{\mathrm{4}} {t}\:{dt} \\ $$
Question Number 35675 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\:\frac{{x}}{{e}^{{x}} \:−\mathrm{1}}{dx}\:.. \\ $$
Question Number 35635 Answers: 1 Comments: 1
Question Number 35992 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)=\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{x}}\:\chi_{\left.\right]−{a},{a}\left[\right.} \left({x}\right)\:\:{with}\:{a}>\mathrm{0} \\ $$$${calculate}\:{the}\:{fourier}\:{trsnsform}\:{of}\:{f}\:. \\ $$
Question Number 35632 Answers: 0 Comments: 2
$${let}\:\varphi\left({x}\right)=\:\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }}\:\:{if}\:\mid{x}\mid<{a}\:\:{and}\:\varphi\left({x}\right)=\mathrm{0}\:{if}\:\mid{x}\mid\geqslant{a} \\ $$$${find}\:{the}\:{fourier}\:{transform}\:{of}\:\varphi\:. \\ $$
Question Number 35631 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\frac{{t}}{{n}}} \:\:{arctan}\left({t}\right){dt} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{U}_{{n}} \:\:\left({n}\rightarrow+\infty\right) \\ $$
Question Number 35630 Answers: 0 Comments: 5
$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} {dt} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}−{cos}\left({t}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} \:{dt}\:. \\ $$
Question Number 35629 Answers: 0 Comments: 0
$${let}\:\:{f}\left({x},{y}\right)\:=\:\int_{{x}} ^{{y}} \:\:\frac{{ln}\left({t}\right){ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt}\:\:{with}\:\mathrm{0}<{x}<{y}<\mathrm{1} \\ $$$${give}\:{f}\left({x},{y}\right)\:{at}\:{form}\:{of}\:{serie}\:. \\ $$
Question Number 35628 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:{I}\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right){ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt} \\ $$
Question Number 35627 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\: \\ $$$${I}\:\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \mid{sinx}\mid\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$
Question Number 35625 Answers: 0 Comments: 0
$${find}\:{lim}_{\xi\rightarrow\mathrm{0}} \:\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{dx}}{\sqrt{\:{sin}^{\mathrm{2}} {x}\:+\xi\:{cos}^{\mathrm{2}} {x}}} \\ $$
Question Number 35620 Answers: 0 Comments: 1
$${let}\:\:{f}\left({x}\right)\:={e}^{−{x}} \:{sinx}\:\:\:{odd}\:\mathrm{2}\pi\:{periodic}\: \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$
Question Number 35619 Answers: 0 Comments: 2
$${let}\:{f}\left({x}\right)\:=\:{x}\mid{x}\mid\:\:{odd}\:\mathrm{2}\pi\:{periodic} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$
Question Number 35618 Answers: 0 Comments: 1
$${integrate}\:{the}\:{e}.{d}.\:{y}'\:\:+{e}^{−\mathrm{2}{x}} {y}\:=\:\left(\mathrm{2}{x}+\mathrm{1}\right){cosx} \\ $$
Question Number 35617 Answers: 0 Comments: 0
$${integrate}\:{the}\:{e}.{d}\:.\:\:{y}^{''} \:\:+\left({x}−\mathrm{1}\right){y}\:=\:{e}^{−{x}} \:{sinx} \\ $$$${with}\:{y}\left(\mathrm{0}\right)\:=\mathrm{1} \\ $$
Question Number 35616 Answers: 0 Comments: 0
$${integrate}\:{the}\:{d}.{e}\:\:{y}^{''} \:−\mathrm{2}{y}^{'} \:+{y}\:=\:{x}^{\mathrm{2}} {ch}\left({x}\right) \\ $$
Question Number 35615 Answers: 0 Comments: 0
$${let}\:\:{S}_{{n}} \:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{1}} \\ $$$${calculate}\:{S}_{{n}} \:\:\:{interms}\:{of}\:{H}_{{n}} \:\:\:{with}\:{H}_{{n}} \:=\sum_{{k}=\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{{k}} \\ $$
Question Number 35613 Answers: 0 Comments: 0
$${find}\:\:{I}_{{a},{b}} =\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{e}^{{x}} }{\left(\mathrm{1}+{a}\:{e}^{{x}} \right)\left(\mathrm{1}+{be}^{{x}} \right)}{dx}\:.. \\ $$
Pg 292 Pg 293 Pg 294 Pg 295 Pg 296 Pg 297 Pg 298 Pg 299 Pg 300 Pg 301
Terms of Service
Privacy Policy
Contact: info@tinkutara.com