Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 297

Question Number 33175    Answers: 0   Comments: 1

find ∫_0 ^1 (dt/((1+t^2 )^2 ))

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$

Question Number 33172    Answers: 0   Comments: 0

find ∫ (dx/(x +(√(x^2 −3x+2)))) .

$${find}\:\:\int\:\:\:\:\frac{{dx}}{{x}\:+\sqrt{{x}^{\mathrm{2}} \:−\mathrm{3}{x}+\mathrm{2}}}\:. \\ $$

Question Number 33170    Answers: 0   Comments: 1

prove that ∫_0 ^∞ ((∣sinx∣)/x) dx is divergent.

$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mid{sinx}\mid}{{x}}\:{dx}\:{is}\:{divergent}. \\ $$

Question Number 33169    Answers: 1   Comments: 1

find the value of ∫_0 ^π (dx/(1+2 sin^2 x)) .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}\:{sin}^{\mathrm{2}} {x}}\:\:. \\ $$

Question Number 33166    Answers: 0   Comments: 0

find the value of ∫_0 ^1 (dx/(1+x^4 )) .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} }\:\:. \\ $$

Question Number 33155    Answers: 0   Comments: 4

Evaluate ∫_(−∞) ^∞ 3x^2 (x^3 + 1)^2 e^(−x^6 − 2x^3 ) dx

$$\mathrm{Evaluate} \\ $$$$\int_{−\infty} ^{\infty} \:\mathrm{3}{x}^{\mathrm{2}} \left({x}^{\mathrm{3}} \:+\:\mathrm{1}\right)^{\mathrm{2}} \:{e}^{−{x}^{\mathrm{6}} \:−\:\mathrm{2}{x}^{\mathrm{3}} } \:{dx} \\ $$

Question Number 33130    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ ((1+x cosθ)/(x^2 +2x cosθ +1)) dx .

$${find}\:\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}+{x}\:{cos}\theta}{{x}^{\mathrm{2}} \:+\mathrm{2}{x}\:{cos}\theta\:+\mathrm{1}}\:{dx}\:. \\ $$

Question Number 33129    Answers: 0   Comments: 2

1)find the value of u_n =∫_(−∞) ^(+∞) ((cos(nx))/(4 +x^2 )) dx 2) find the nature of Σ u_n .

$$\left.\mathrm{1}\right){find}\:{the}\:{value}\:{of}\:\:\:{u}_{{n}} =\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left({nx}\right)}{\mathrm{4}\:+{x}^{\mathrm{2}} }\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{nature}\:{of}\:\Sigma\:{u}_{{n}} \:. \\ $$

Question Number 33128    Answers: 0   Comments: 2

find the value of ∫_0 ^∞ (dx/((1+x^2 )( 1+x^4 ))) .

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\:\mathrm{1}+{x}^{\mathrm{4}} \right)}\:. \\ $$

Question Number 33120    Answers: 1   Comments: 0

let give α>0 find the value of ∫_0 ^1 (dx/(√((1−x)(1+αx)))) .

$${let}\:{give}\:\alpha>\mathrm{0}\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\sqrt{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+\alpha{x}\right)}}\:. \\ $$

Question Number 33119    Answers: 0   Comments: 1

find ∫_0 ^∞ (t^n /(e^t −1)) dt by using ξ(x) for n integr ξ(x)=Σ_(n=1) ^∞ (1/n^x ) with x>1 .

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{{n}} }{{e}^{{t}} \:−\mathrm{1}}\:{dt}\:{by}\:{using}\:\xi\left({x}\right)\:{for}\:{n}\:{integr} \\ $$$$\xi\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:{with}\:{x}>\mathrm{1}\:. \\ $$

Question Number 33069    Answers: 0   Comments: 0

by using residus theorem prove that ∫_0 ^∞ (t^(a−1) /(1+t)) dt = (π/(sin(πa))) with 0<a<1 .

$${by}\:\:{using}\:{residus}\:{theorem}\:{prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}\:{dt}\:=\:\frac{\pi}{{sin}\left(\pi{a}\right)}\:{with}\:\:\mathrm{0}<{a}<\mathrm{1}\:. \\ $$

Question Number 33028    Answers: 0   Comments: 0

find the value of∫_0 ^∞ (e^(−[t]) /(t+1))dt .

$${find}\:{the}\:{value}\:{of}\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−\left[{t}\right]} }{{t}+\mathrm{1}}{dt}\:\:. \\ $$

Question Number 33027    Answers: 1   Comments: 0

calculate ∫_0 ^∞ (x^3 /(1+x^5 ))dx.

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{5}} }{dx}. \\ $$

Question Number 33026    Answers: 1   Comments: 1

calculate ∫_0 ^∞ ((1+x^4 )/(1+x^6 )) dx .

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}+{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{6}} }\:{dx}\:. \\ $$

Question Number 33009    Answers: 2   Comments: 1

help ! ! ! ∫ (dx/(csc(x)−1)) = ? [ my way ] ∫( (dx/((1/(sinx)) − 1)) ) =∫((sinx)/(1−sinx)) dx =−∫ ((sinx−1+1)/(sinx−1)) dx =−∫1+(1/(sinx−1)) dx =−(∫1dx+∫((sinx+1)/((sinx−1)(sinx+1))) dx) =−(x+C−∫((sinx+1)/(1−sin^2 x)) dx) =−(x+C−∫ ((sinx)/(cos^2 x)) dx−∫ (1/(cos^2 x)) dx) =−(x+C+∫(cosx)^(−2) dcosx−∫(1/(cos^2 x))dx) =−(x−(cosx)^(−1) +C−∫(1/(cos^2 x))dx) ...and I can′t solve the ∫(1/(cos^2 x))dx oh i just found that is tanx+C

$${help}\:!\:!\:! \\ $$$$\int\:\frac{{dx}}{{csc}\left({x}\right)−\mathrm{1}}\:=\:? \\ $$$$ \\ $$$$\left[\:{my}\:{way}\:\right] \\ $$$$\int\left(\:\frac{{dx}}{\frac{\mathrm{1}}{{sinx}}\:−\:\mathrm{1}}\:\right) \\ $$$$=\int\frac{{sinx}}{\mathrm{1}−{sinx}}\:{dx} \\ $$$$=−\int\:\frac{{sinx}−\mathrm{1}+\mathrm{1}}{{sinx}−\mathrm{1}}\:{dx} \\ $$$$=−\int\mathrm{1}+\frac{\mathrm{1}}{{sinx}−\mathrm{1}}\:{dx} \\ $$$$=−\left(\int\mathrm{1}{dx}+\int\frac{{sinx}+\mathrm{1}}{\left({sinx}−\mathrm{1}\right)\left({sinx}+\mathrm{1}\right)}\:{dx}\right) \\ $$$$=−\left({x}+{C}−\int\frac{{sinx}+\mathrm{1}}{\mathrm{1}−{sin}^{\mathrm{2}} {x}}\:{dx}\right) \\ $$$$=−\left({x}+{C}−\int\:\frac{{sinx}}{{cos}^{\mathrm{2}} {x}}\:{dx}−\int\:\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}\:{dx}\right) \\ $$$$=−\left({x}+{C}+\int\left({cosx}\right)^{−\mathrm{2}} {dcosx}−\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}{dx}\right) \\ $$$$=−\left({x}−\left({cosx}\right)^{−\mathrm{1}} +{C}−\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}{dx}\right) \\ $$$$...{and}\:{I}\:{can}'{t}\:{solve}\:{the}\:\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}{dx} \\ $$$$ \\ $$$${oh}\:{i}\:{just}\:{found}\:{that}\:{is}\:{tanx}+{C} \\ $$

Question Number 32994    Answers: 0   Comments: 1

find ∫_0 ^∞ ((1−cos(λx))/x^2 ) dx with λ>0 .

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{cos}\left(\lambda{x}\right)}{{x}^{\mathrm{2}} }\:{dx}\:{with}\:\lambda>\mathrm{0}\:. \\ $$

Question Number 32993    Answers: 0   Comments: 0

calculate ∫_0 ^∞ e^(−λx) ((sinx)/(√x)) dx wih λ>0 .

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\lambda{x}} \:\frac{{sinx}}{\sqrt{{x}}}\:{dx}\:\:{wih}\:\lambda>\mathrm{0}\:. \\ $$

Question Number 33125    Answers: 0   Comments: 0

let give u_n = ∫_0 ^π ((cos(nx)dx)/(1−2λcosx +λ^2 )) 1) prove that λ u_(n+2) −(1+λ^2 )u_(n+1) +λ u_n =0 2) ptove that Σ u_n is convergent and find its sum

$${let}\:{give}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{cos}\left({nx}\right){dx}}{\mathrm{1}−\mathrm{2}\lambda{cosx}\:+\lambda^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\lambda\:{u}_{{n}+\mathrm{2}} \:−\left(\mathrm{1}+\lambda^{\mathrm{2}} \right){u}_{{n}+\mathrm{1}} \:+\lambda\:{u}_{{n}} =\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{ptove}\:{that}\:\Sigma\:{u}_{{n}} \:{is}\:{convergent}\:{and}\:{find}\:{its}\:{sum} \\ $$

Question Number 32958    Answers: 0   Comments: 1

Question Number 32951    Answers: 2   Comments: 1

Evaluate ∫((x^4 +1)/(x^6 +1))dx [W.B.H.S 2018]

$${Evaluate} \\ $$$$\int\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{6}} +\mathrm{1}}{dx}\:\:\:\:\:\left[{W}.{B}.{H}.{S}\:\mathrm{2018}\right] \\ $$

Question Number 32939    Answers: 1   Comments: 1

1) study the convergence of ∫_0 ^1 (x^p /(1+x)) dx 2) find lim_(p→∞) ∫_0 ^1 (x^p /(1+x))dx .

$$\left.\mathrm{1}\right)\:{study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{p}} }{\mathrm{1}+{x}}\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{p}\rightarrow\infty} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{p}} }{\mathrm{1}+{x}}{dx}\:. \\ $$

Question Number 32928    Answers: 2   Comments: 2

plz help Evalute ∫_(π/3 ) ^(π/4) ((sin^2 x)/(√(1−cosx)))dx

$$\boldsymbol{{plz}}\:\boldsymbol{{help}} \\ $$$${Evalute} \\ $$$$ \\ $$$$\underset{\pi/\mathrm{3}\:} {\overset{\pi/\mathrm{4}} {\int}}\:\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\sqrt{\mathrm{1}−{cosx}}}{dx} \\ $$

Question Number 32789    Answers: 0   Comments: 0

∣∫_a ^b f(x)dx≤∣∫_a ^b ∣f(x)∣dx∣

$$\mid\underset{{a}} {\overset{{b}} {\int}}{f}\left({x}\right){dx}\leqslant\mid\underset{{a}} {\overset{{b}} {\int}}\mid{f}\left({x}\right)\mid{dx}\mid \\ $$

Question Number 32785    Answers: 1   Comments: 0

∫((3x^2 +2x−4)/(7x^2 −9x+2))dx

$$\int\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{4}}{\mathrm{7}{x}^{\mathrm{2}} −\mathrm{9}{x}+\mathrm{2}}{dx} \\ $$

Question Number 32763    Answers: 1   Comments: 1

  Pg 292      Pg 293      Pg 294      Pg 295      Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com