Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 296
Question Number 35471 Answers: 0 Comments: 0
$$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}={area}\:{under}\:{the}\:{curve}\:{but}\:{say}\:{why} \\ $$$${what}\:{is}\:{the}\:{meaning}\:{of}\:\int\:\leftarrow{this}\:{sign} \\ $$
Question Number 35456 Answers: 2 Comments: 0
$$\int\frac{{dx}}{{x}\left({x}^{\mathrm{2018}} +\mathrm{1}\right)} \\ $$
Question Number 35440 Answers: 1 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{2}{x}^{\mathrm{2}} \:\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 35438 Answers: 0 Comments: 1
$${let}\:{m}>\mathrm{0}\:{and}\:\mathrm{0}<{a}<{b}\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{cos}\left({mx}\right)}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} \:+{b}^{\mathrm{2}} \right)}{dx} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} \:\:+\mathrm{3}\right)}{dx} \\ $$
Question Number 35429 Answers: 1 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{2}{x}−\mathrm{1}}{\sqrt{{x}^{\mathrm{2}} \:\:+\mathrm{6}}}\:{dx} \\ $$
Question Number 35428 Answers: 1 Comments: 1
$${find}\:\:\:\:\:\int\:\:\:\:\frac{{x}+\mathrm{3}}{\sqrt{{x}^{\mathrm{2}} \:+{x}\:−\mathrm{1}}}{dx} \\ $$
Question Number 35427 Answers: 1 Comments: 1
$${calculate}\:\:\:\int_{\mathrm{2}} ^{\mathrm{5}} \:\:\:\frac{{e}^{\sqrt{{x}+\mathrm{1}}} }{\sqrt{{x}+\mathrm{1}}}{dx} \\ $$
Question Number 35379 Answers: 2 Comments: 3
$$\int_{\mathrm{0}} ^{\:\:\mathrm{1}} {t}^{\mathrm{2}} \sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:=\:? \\ $$
Question Number 35325 Answers: 1 Comments: 0
$${Sketch}\:{the}\:{region}\:{enclosed}\:{by}\:{the} \\ $$$${curves}\:{of}\:{y}=\mathrm{1}/{x}\:{and}\:{y}=\mathrm{1}/{x}^{\mathrm{2}} \:{and} \\ $$$${find}\:{the}\:{area}\:{of}\:{the}\:{region}. \\ $$$${plzz}\:{help}\:{me} \\ $$
Question Number 35294 Answers: 1 Comments: 1
Question Number 35290 Answers: 0 Comments: 1
$$\int\frac{{x}+\mathrm{1}}{{x}^{\mathrm{3}} }{dx} \\ $$
Question Number 35242 Answers: 1 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{xdx}}{\mathrm{1}+{sinx}} \\ $$
Question Number 35241 Answers: 2 Comments: 6
$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{x}\:{dx}}{\mathrm{3}\:+{cosx}}\:\:. \\ $$
Question Number 35238 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{e}^{−\mathrm{3}{x}} \:−{e}^{−\mathrm{2}{x}} }{{x}^{\mathrm{2}} }{dx}\: \\ $$
Question Number 35237 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}} \:−{e}^{−{x}^{\mathrm{2}} } }{{x}}{dx}\:. \\ $$
Question Number 35229 Answers: 1 Comments: 2
$${find}\:{the}\:{value}\:{of}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\mathrm{2}+{ia}\right)^{\mathrm{2}} {t}^{\mathrm{2}} } {dt}\:\:\:\:{with}\:{a}\:{from}\:{R}\:\:\:\:\mid{a}\mid<\mathrm{1}. \\ $$
Question Number 35228 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{of}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{px}} \:\:\:\frac{{sin}\left({qx}\right)}{\sqrt{{x}}}{dx}\:\:{with}\:{p}>\mathrm{0}\:{and}\:{q}>\mathrm{0} \\ $$
Question Number 35226 Answers: 0 Comments: 4
$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\:\frac{{dx}}{{a}\:{sin}^{\mathrm{2}} {x}\:\:+{cos}^{\mathrm{2}} {x}} \\ $$$${with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{g}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{sin}^{\mathrm{2}} {x}}{\left({a}\:{sin}^{\mathrm{2}} {x}\:+{cos}^{\mathrm{2}} {x}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 35225 Answers: 0 Comments: 4
$$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{dt}}{{a}\:{cos}^{\mathrm{2}} {t}\:+\:{sin}^{\mathrm{2}} {t}}\:{with}\:{a}\neq\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{g}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}^{\mathrm{2}} {t}}{\left({a}\:{cos}^{\mathrm{2}} {t}\:+{sin}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }{dt}\: \\ $$
Question Number 35224 Answers: 1 Comments: 0
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{\mathrm{1}+\mathrm{2}{cost}}{\mathrm{5}+\mathrm{4}{cost}}{dt} \\ $$
Question Number 35218 Answers: 0 Comments: 0
$${prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:=\frac{\pi}{{sin}\left(\pi{a}\right)} \\ $$$${that}\:{we}\:{know}\:\mathrm{0}<{a}<\mathrm{1}\:. \\ $$
Question Number 35217 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{sin}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$
Question Number 35215 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cosx}\:+{cos}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$
Question Number 35214 Answers: 0 Comments: 0
$${let}\:{a}>\mathrm{0}\:\:{b}\:\in{C}\:{and}\:{Re}\left({b}\right)>\mathrm{0} \\ $$$${cslculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{iax}} }{{x}−{ib}}{dx}\:\:{and}\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{iax}} }{{x}+{ib}}{dx} \\ $$
Question Number 35213 Answers: 0 Comments: 0
$${find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left(\lambda{x}^{\mathrm{2}} \right){dx}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{sin}\left(\lambda{x}^{\mathrm{2}} \right){dx}\:{with}\:\lambda>\mathrm{0}\:. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{\mathrm{2}} \right){dx}\:{and}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{2}} \right){dx}\left(\:{integrals}\:{of}\:{fresnel}\right) \\ $$
Question Number 35212 Answers: 0 Comments: 0
$${prove}\:{by}\:{using}\:{series}\:{only}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{\mathrm{2}} \right){dx}=\:\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}} \right){dx}. \\ $$
Pg 291 Pg 292 Pg 293 Pg 294 Pg 295 Pg 296 Pg 297 Pg 298 Pg 299 Pg 300
Terms of Service
Privacy Policy
Contact: info@tinkutara.com