Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 295
Question Number 36195 Answers: 0 Comments: 1
$${let}\:\:{C}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\:{y}=\mathrm{2}{x}^{\mathrm{2}} \right\} \\ $$$${calculate}\:\int_{{C}} \:{x}^{\mathrm{2}} {ydx}\:+\left({x}^{\mathrm{2}} \:−{y}^{\mathrm{2}} \right){dy} \\ $$
Question Number 36194 Answers: 0 Comments: 0
$${let}\:{D}\:=\left\{\left({x},{y},{z}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}<{z}<\mathrm{1}\:{and}\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:<{z}^{\mathrm{2}} \right\} \\ $$$${calculate}\:\int\int_{{D}} {xyzdxdydz} \\ $$
Question Number 36193 Answers: 0 Comments: 1
$${let}\:{D}\:=\left\{\left({x},{y}\right)\in\:{R}^{\mathrm{2}} \:/\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:−{x}<\mathrm{0}\:{and}\right. \\ $$$$\left.{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:−{y}\:>\mathrm{0}\:{and}\:{y}>\mathrm{0}\right\} \\ $$$${calculate}\int\int_{{D}} \:\:\left({x}+{y}\right)^{\mathrm{2}} {dxdy} \\ $$
Question Number 36192 Answers: 0 Comments: 1
$${let}\:{D}\:=\left\{\left({x},{y}\right)\in\:{R}^{\mathrm{2}} \:/{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} <\mathrm{1}\right\} \\ $$$${find}\:{the}\:{value}\:{of}\:\int\int_{{D}} \:\frac{{dxdy}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}\:} +\:\mathrm{2}} \\ $$
Question Number 36190 Answers: 0 Comments: 1
$${calculate}\:\:\int\int_{{D}} \left({x}+{y}\right){e}^{{x}+{y}} {dxdy}\:\:{with} \\ $$$${D}\:=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:/\:\mathrm{0}<{x}<\mathrm{2}\:{and}\:\:\mathrm{1}<{y}<\mathrm{2}\:\right\} \\ $$
Question Number 36189 Answers: 0 Comments: 1
$${let}\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−{x}^{\mathrm{2}} {t}} \sqrt{{t}}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$${calculate}\:{lim}_{{x}\rightarrow+\infty} \:{F}\left({x}\right)\:. \\ $$$$ \\ $$
Question Number 36188 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\sqrt{{t}}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$
Question Number 36187 Answers: 0 Comments: 3
$${let}\:{I}_{{n}} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{sin}\left({t}\right)}{\left({t}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)^{{n}} }{dt}\: \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{relation}\:{between}\:{I}_{{n}+\mathrm{1}} \:\:{and}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{\mathrm{2}} \left({x}\right)\:{and}\:{I}_{\mathrm{3}} \left({x}\right)\: \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{tsin}\left({t}\right)}{\left(\mathrm{2}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$
Question Number 36186 Answers: 0 Comments: 1
$${find}\:{nature}\:{of}\:\int_{\mathrm{1}} ^{+\infty} \sqrt{{t}}\:{sin}\left({t}^{\mathrm{2}} \right){dt}\:. \\ $$
Question Number 36185 Answers: 0 Comments: 2
$${study}\:{the}\:{vonvergence}\:{of}\: \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{e}^{−\frac{\mathrm{1}}{{t}}} \:−{cos}\left(\frac{\mathrm{1}}{{t}}\right)}{{t}}{dt} \\ $$
Question Number 36184 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of}\:\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{cos}\left({t}\right)}{\sqrt{{t}}}{dt} \\ $$
Question Number 36183 Answers: 0 Comments: 0
$${calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:{arctan}\left(\frac{\mathrm{1}}{{t}}\right){dt} \\ $$
Question Number 36182 Answers: 2 Comments: 1
$${calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dt}}{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }} \\ $$
Question Number 36181 Answers: 0 Comments: 1
$${let}\:{I}\left(\xi\right)\:\:=\:\int_{\xi} ^{\mathrm{1}−\xi} \:\:\:\frac{{dt}}{\mathrm{1}−\left({t}−\xi\right)^{\mathrm{2}} } \\ $$$${find}\:{lim}_{\xi\rightarrow\mathrm{0}^{+} } \:\:\:{I}\left(\xi\right) \\ $$
Question Number 36180 Answers: 1 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$
Question Number 36167 Answers: 0 Comments: 2
$${let}\:{give}\:\:{I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{i}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{extract}\:{Re}\left({I}\right)\:{and}\:{Im}\left({I}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{I} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{Re}\left({I}\right)\:{and}\:{Im}\left({I}\right)\:. \\ $$
Question Number 36057 Answers: 2 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{cosx}}{{sinx}\:+{tanx}}{dx}\: \\ $$
Question Number 36056 Answers: 1 Comments: 2
$${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{2}{x}}{\left({x}^{\mathrm{2}} \:+{mx}\:+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:{with}\:\mid{m}\mid<\mathrm{2} \\ $$
Question Number 36031 Answers: 0 Comments: 0
$$\mathrm{Q}.\:\mathrm{Evaluate}:\:\:\:\int_{\int\mathrm{xyzdxdydz}} ^{\int\mathrm{zyxdzdydx}} \int_{\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{sin}\:\mathrm{x}} \right)} ^{\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{cos}\:\mathrm{x}} \right)} \int_{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{x}^{\mathrm{2}} +\mathrm{2}}{\mathrm{x}}} ^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{2}}{\mathrm{x}}} \int_{\mathrm{0}} ^{\infty} \mathrm{w}^{\mathrm{1}−\mathrm{x}} \mathrm{x}^{\mathrm{1}−\mathrm{y}} \mathrm{y}^{\mathrm{1}−\mathrm{z}} \mathrm{z}^{\mathrm{1}−\mathrm{w}} \mathrm{dwdxdydz} \\ $$
Question Number 36009 Answers: 0 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{xdx}}{\left(\mathrm{2}{x}+\mathrm{1}+{i}\right)^{\mathrm{3}} }\:\:{with}\:{i}^{\mathrm{2}} \:=−\mathrm{1}\:. \\ $$
Question Number 35990 Answers: 0 Comments: 2
$${calculate}\:\int_{\mathrm{2}} ^{\mathrm{5}} \:\:\:\:\frac{{xdx}}{\mathrm{2}{x}+\mathrm{1}\:+\sqrt{{x}−\mathrm{1}}} \\ $$
Question Number 35983 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{2}\sqrt{{t}}\:+\mathrm{1}}{{t}^{\mathrm{5}} \:\:\:+\mathrm{3}}{dt}\:\:. \\ $$
Question Number 35982 Answers: 0 Comments: 0
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−{arctsn}\left(\:\mathrm{1}+{tx}^{\mathrm{2}} \right)} {dx}\:\:{with}\:{t}\:{from}\:{R} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right)\:. \\ $$
Question Number 35949 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\:\:\alpha} \frac{\mathrm{tan}\:\theta}{\sqrt{{a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta−{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}}\:{d}\theta\:=\:? \\ $$
Question Number 35920 Answers: 1 Comments: 1
$$\int\:\frac{{e}^{\mathrm{2}{x}} +\mathrm{1}}{\mathrm{2}{e}^{{x}} −\mathrm{1}}\:{dx}\:=\:? \\ $$
Question Number 35909 Answers: 1 Comments: 4
$$\int\frac{\mathrm{7}{x}−\mathrm{6}}{\left({x}^{\mathrm{2}} +\mathrm{25}\right)\sqrt{\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\mathrm{4}}}\:{dx}\:=\:? \\ $$
Pg 290 Pg 291 Pg 292 Pg 293 Pg 294 Pg 295 Pg 296 Pg 297 Pg 298 Pg 299
Terms of Service
Privacy Policy
Contact: info@tinkutara.com