Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 295
Question Number 32718 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:{arctan}\left(\mathrm{2}{x}\right)\:\frac{{e}^{−{tx}} }{{x}}\:{dc}\:{with}\:{t}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{{x}}\:{e}^{−{x}} \:{dx}. \\ $$
Question Number 32717 Answers: 0 Comments: 0
$${finf}\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} } \\ $$
Question Number 32716 Answers: 1 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{cos}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{3}{sin}^{\mathrm{2}} {x}}{dx}\:. \\ $$
Question Number 32715 Answers: 0 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{it}\right)\left(\mathrm{1}+{it}^{\mathrm{2}} \right)}\:\:. \\ $$
Question Number 32714 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:. \\ $$
Question Number 32712 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{a}\:{cos}^{\mathrm{2}} {t}}\:. \\ $$
Question Number 32722 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{3}} }\:. \\ $$
Question Number 32705 Answers: 0 Comments: 1
$${let}\:{give}\:\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:{ln}\left(\mathrm{1}\:+\frac{{x}}{{t}^{\mathrm{2}} }\right){dt}\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right). \\ $$
Question Number 32704 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left({x}+\mathrm{1}\right)\sqrt{{x}}}{\mathrm{2}+{x}^{\mathrm{2}} }{dx}. \\ $$
Question Number 32675 Answers: 1 Comments: 1
Question Number 32708 Answers: 0 Comments: 1
$${let}\:{give}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{ln}\left(\mathrm{1}+{xtant}\right)}{{tant}}{dt} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{ln}\left(\mathrm{1}+\mathrm{2}{tant}\right)}{{tant}}{dt}\:. \\ $$
Question Number 32627 Answers: 0 Comments: 1
$${plzz}\:{help}\:{ne}\:{differentiate}\: \\ $$$${between} \\ $$$$\int{sin}\left(\mathrm{2}{x}\right)=\:−\frac{\mathrm{1}}{\mathrm{2}}{cox}\left(\mathrm{2}{x}\right)+{c}\: \\ $$$${is}\:{not}\:{change}\:{to}\:\int\mathrm{2}{sin}\left({x}\right){cos}\left({x}\right) \\ $$$${but}\:\underset{{b}} {\overset{{a}} {\int}}{sin}\left(\mathrm{2}{x}\right)=\:{is}\:{change}\:{to} \\ $$$$\underset{{b}} {\overset{{a}} {\int}}\mathrm{2}{sin}\left({x}\right){cos}\left({x}\right) \\ $$
Question Number 32484 Answers: 0 Comments: 2
$$ \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}+{y}\right)}{\left({x}+{y}\right)}\:{dx}\:{dy} \\ $$
Question Number 32483 Answers: 0 Comments: 2
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}{cosx}}\:. \\ $$
Question Number 32482 Answers: 0 Comments: 0
$${find}\:\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{sin}^{\mathrm{2}} {t}}{\mathrm{1}−\mathrm{2}{xcost}\:+{x}^{\mathrm{2}} }{dt}\:{with}\:\mid{x}\mid<\mathrm{1}\:. \\ $$
Question Number 32481 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\left(\sqrt{{t}\:}\:−\mathrm{2}\sqrt{{t}+\mathrm{1}}\:+\sqrt{\left.{t}+\mathrm{2}\right)}\:{dt}\right. \\ $$
Question Number 32480 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\alpha} \:\sqrt{{tanx}}\:{dx}\:{with}\:\mathrm{0}<\alpha<\frac{\pi}{\mathrm{2}}\:. \\ $$
Question Number 32479 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}{x}\:+\mathrm{1}\right)} \\ $$
Question Number 32478 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:{ln}\left(\frac{\mathrm{1}+{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} }\right){dt} \\ $$
Question Number 32477 Answers: 0 Comments: 1
$${calcilate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 32420 Answers: 0 Comments: 0
Question Number 32419 Answers: 0 Comments: 0
$$ \\ $$
Question Number 32367 Answers: 0 Comments: 0
$${let}\:\alpha\in{R}\:{and}\:{x}^{\mathrm{2}} \neq\mathrm{1}\:\:{find}\:{the}\:{value}\:{of} \\ $$$${f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:{ln}\left({x}^{\mathrm{2}} −\mathrm{2}{x}\:{cost}\:+\mathrm{1}\right){dt} \\ $$$${calculate}\:{f}\left({x}\right). \\ $$
Question Number 32365 Answers: 0 Comments: 3
$${let}\:{F}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:{ln}\left(\mathrm{1}+{xcos}\theta\right){d}\theta\:.{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${find}\:{F}\left({x}\right)\:. \\ $$
Question Number 32363 Answers: 0 Comments: 1
$${let}\:{consider}\:{the}\:{function} \\ $$$${f}\left({x},\theta\right)\:=\:\:\int_{{x}} ^{{x}^{\mathrm{2}} } {ln}\left(\:\mathrm{2}+{sin}\theta\:{cost}\right){dt} \\ $$$${calculate}\:\frac{\partial{f}}{\partial{x}}\left({x},\theta\right)\:{and}\:\:\frac{\partial{f}}{\partial\theta}\left({x},\theta\right)\:. \\ $$
Question Number 32362 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{2}{x}+\mathrm{3}\right)\left(\mathrm{2}{x}+\mathrm{5}\right)}\:. \\ $$
Pg 290 Pg 291 Pg 292 Pg 293 Pg 294 Pg 295 Pg 296 Pg 297 Pg 298 Pg 299
Terms of Service
Privacy Policy
Contact: info@tinkutara.com