Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 292
Question Number 36754 Answers: 1 Comments: 1
$${calculate}\:\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{\mathrm{4}+{x}^{\mathrm{2}} }}\:. \\ $$
Question Number 36753 Answers: 1 Comments: 2
$${find}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:{x}^{{n}} \:{arctan}\left({x}\right){dx}\:. \\ $$
Question Number 36752 Answers: 1 Comments: 4
$${find}\:\:\int\:\:\:\frac{{dx}}{{arcsinx}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:. \\ $$
Question Number 36747 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{sin}\left({nx}\right)}{{n}}\:{x}^{{n}} \\ $$$$\left.\mathrm{1}\left.\right)\:{prove}\:{that}\:{f}\:{is}\:{C}^{\mathrm{1}} \:{on}\:\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.\mathrm{2}\right){calculate}\:{f}^{'} \left({x}\right)\:{and}\:{prove}\:{that} \\ $$$${f}\left({x}\right)={arctan}\left(\:\frac{{xsinx}}{\mathrm{1}−{x}\:{cosx}}\right) \\ $$
Question Number 36738 Answers: 2 Comments: 3
$$\left(\mathrm{1}\right)\:\:\:\:\:\int\frac{{d}\alpha}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}\alpha\right)^{\mathrm{2}} }= \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\int\frac{{d}\beta}{\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\beta\right)^{\mathrm{2}} }= \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:\int\frac{{d}\gamma}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}\gamma\right)\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\gamma\right)}= \\ $$
Question Number 36737 Answers: 0 Comments: 1
$${let}\:{g}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\:\mathrm{1}−{e}^{{i}\theta} {x}^{\mathrm{2}} \right){dx} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{g}\left(\theta\right)\:.\theta\:{from}\:{R}. \\ $$
Question Number 36736 Answers: 0 Comments: 1
$${let}\:\:{f}\left(\theta\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}−{e}^{{i}\theta} {x}\right){dx} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left(\theta\right) \\ $$
Question Number 36728 Answers: 1 Comments: 1
$${the}\:{improper}\:{integral}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{converges}\:{to} \\ $$
Question Number 36689 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}^{\mathrm{3}} \right){dx}\:{then} \\ $$$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right){dx} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx}\:{then}\: \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}−{x}\:+{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 36690 Answers: 0 Comments: 1
$${let}\:\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{ln}\left(\mathrm{1}\:−{tx}^{\mathrm{3}} \right){dx}\:\:{with}\:\mathrm{0}<{t}\leqslant\mathrm{1} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right)\: \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{2}−{x}^{\mathrm{3}} \right){dx}\:. \\ $$
Question Number 36677 Answers: 4 Comments: 3
Question Number 36649 Answers: 1 Comments: 4
$$\int\:\frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{1}}\:{dx} \\ $$
Question Number 36643 Answers: 2 Comments: 1
$$\int\:\frac{{x}}{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}\:{dx}\:=\:? \\ $$
Question Number 36633 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right){dx} \\ $$
Question Number 36613 Answers: 1 Comments: 5
Question Number 36597 Answers: 2 Comments: 2
$$\int\frac{\mathrm{d}{x}}{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \left(\mathrm{1}+{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)}\:=\:? \\ $$
Question Number 36659 Answers: 1 Comments: 3
$$\int\:\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{4}} {x}+\mathrm{cos}\:^{\mathrm{4}} {x}}\:{dx} \\ $$
Question Number 36595 Answers: 2 Comments: 0
$$\int\:\frac{{x}\:{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} +\sqrt{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }}}\:=\:? \\ $$
Question Number 36547 Answers: 3 Comments: 0
$$\int\frac{\mathrm{5}{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{5}} }{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 36546 Answers: 0 Comments: 0
$$\int\frac{\left({x}−\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}}}{dx} \\ $$
Question Number 36545 Answers: 2 Comments: 6
$$\int\frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx} \\ $$
Question Number 36544 Answers: 1 Comments: 0
$$\int\frac{{dx}}{{tanx}+{cotx}+{secx}+{cosecx}} \\ $$
Question Number 36543 Answers: 0 Comments: 0
$$\int{cot}^{−\mathrm{1}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\:{dx} \\ $$
Question Number 36541 Answers: 0 Comments: 1
$$\int\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\right)^{{n}} {dx} \\ $$
Question Number 36538 Answers: 0 Comments: 1
$$\int\frac{{dx}}{\left({a}+{bx}^{\mathrm{2}} \right)\sqrt{{b}−{ax}^{\mathrm{2}} \:}}\:\: \\ $$
Question Number 36537 Answers: 0 Comments: 3
Pg 287 Pg 288 Pg 289 Pg 290 Pg 291 Pg 292 Pg 293 Pg 294 Pg 295 Pg 296
Terms of Service
Privacy Policy
Contact: info@tinkutara.com