Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 292

Question Number 36754    Answers: 1   Comments: 1

calculate ∫_1 ^(+∞) (dx/(x^2 (√(4+x^2 )))) .

$${calculate}\:\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{\mathrm{4}+{x}^{\mathrm{2}} }}\:. \\ $$

Question Number 36753    Answers: 1   Comments: 2

find I_n = ∫_0 ^1 x^n arctan(x)dx .

$${find}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:{x}^{{n}} \:{arctan}\left({x}\right){dx}\:. \\ $$

Question Number 36752    Answers: 1   Comments: 4

find ∫ (dx/(arcsinx(√(1−x^2 )))) .

$${find}\:\:\int\:\:\:\frac{{dx}}{{arcsinx}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:. \\ $$

Question Number 36747    Answers: 0   Comments: 1

let f(x)= Σ_(n=1) ^∞ ((sin(nx))/n) x^n 1) prove that f is C^1 on ]−1,1[ 2)calculate f^′ (x) and prove that f(x)=arctan( ((xsinx)/(1−x cosx)))

$${let}\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{sin}\left({nx}\right)}{{n}}\:{x}^{{n}} \\ $$$$\left.\mathrm{1}\left.\right)\:{prove}\:{that}\:{f}\:{is}\:{C}^{\mathrm{1}} \:{on}\:\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.\mathrm{2}\right){calculate}\:{f}^{'} \left({x}\right)\:{and}\:{prove}\:{that} \\ $$$${f}\left({x}\right)={arctan}\left(\:\frac{{xsinx}}{\mathrm{1}−{x}\:{cosx}}\right) \\ $$

Question Number 36738    Answers: 2   Comments: 3

(1) ∫(dα/((1+sin 2α)^2 ))= (2) ∫(dβ/((1+cos 2β)^2 ))= (3) ∫(dγ/((1+sin 2γ)(1+cos 2γ)))=

$$\left(\mathrm{1}\right)\:\:\:\:\:\int\frac{{d}\alpha}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}\alpha\right)^{\mathrm{2}} }= \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\int\frac{{d}\beta}{\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\beta\right)^{\mathrm{2}} }= \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:\int\frac{{d}\gamma}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}\gamma\right)\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\gamma\right)}= \\ $$

Question Number 36737    Answers: 0   Comments: 1

let g(θ) =∫_0 ^1 ln( 1−e^(iθ) x^2 )dx find a simple form of g(θ) .θ from R.

$${let}\:{g}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\:\mathrm{1}−{e}^{{i}\theta} {x}^{\mathrm{2}} \right){dx} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{g}\left(\theta\right)\:.\theta\:{from}\:{R}. \\ $$

Question Number 36736    Answers: 0   Comments: 1

let f(θ) = ∫_0 ^1 ln(1−e^(iθ) x)dx find a simple form of f(θ)

$${let}\:\:{f}\left(\theta\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}−{e}^{{i}\theta} {x}\right){dx} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left(\theta\right) \\ $$

Question Number 36728    Answers: 1   Comments: 1

the improper integral ∫_0 ^1 (dx/(√(1−x^2 ))) converges to

$${the}\:{improper}\:{integral}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{converges}\:{to} \\ $$

Question Number 36689    Answers: 0   Comments: 1

1) find the value of ∫_0 ^1 ln(1−x^3 )dx then find the value of ∫_0 ^1 ln(1+x+x^2 )dx 2)find the value of ∫_0 ^1 ln(1+x^3 )dx then calculate ∫_0 ^1 ln(1−x +x^2 )dx

$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}^{\mathrm{3}} \right){dx}\:{then} \\ $$$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right){dx} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx}\:{then}\: \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}−{x}\:+{x}^{\mathrm{2}} \right){dx} \\ $$

Question Number 36690    Answers: 0   Comments: 1

let f(t) =∫_0 ^1 ln(1 −tx^3 )dx with 0<t≤1 find a simple form of f(t) 2)calculate ∫_0 ^1 ln(2−x^3 )dx .

$${let}\:\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{ln}\left(\mathrm{1}\:−{tx}^{\mathrm{3}} \right){dx}\:\:{with}\:\mathrm{0}<{t}\leqslant\mathrm{1} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right)\: \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{2}−{x}^{\mathrm{3}} \right){dx}\:. \\ $$

Question Number 36677    Answers: 4   Comments: 3

Question Number 36649    Answers: 1   Comments: 4

∫ (1/(x^4 +1)) dx

$$\int\:\frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{1}}\:{dx} \\ $$

Question Number 36643    Answers: 2   Comments: 1

∫ (x/(x^4 +x^2 +1)) dx = ?

$$\int\:\frac{{x}}{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}\:{dx}\:=\:? \\ $$

Question Number 36633    Answers: 0   Comments: 1

calculate ∫_0 ^1 arctan(x^2 +x+1)dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right){dx} \\ $$

Question Number 36613    Answers: 1   Comments: 5

Question Number 36597    Answers: 2   Comments: 2

∫(dx/(x^(2/3) (1+x^(2/3) ))) = ?

$$\int\frac{\mathrm{d}{x}}{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \left(\mathrm{1}+{x}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)}\:=\:? \\ $$

Question Number 36659    Answers: 1   Comments: 3

∫ (1/(sin^4 x+cos^4 x)) dx

$$\int\:\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{4}} {x}+\mathrm{cos}\:^{\mathrm{4}} {x}}\:{dx} \\ $$

Question Number 36595    Answers: 2   Comments: 0

∫ ((x dx)/(√(1+x^2 +(√((1+x^2 )^3 ))))) = ?

$$\int\:\frac{{x}\:{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} +\sqrt{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }}}\:=\:? \\ $$

Question Number 36547    Answers: 3   Comments: 0

∫((5x^4 +4x^5 )/((x^5 +x+1)^2 ))

$$\int\frac{\mathrm{5}{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{5}} }{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 36546    Answers: 0   Comments: 0

∫(((x−1))/((x+1)(√(x^3 +x^2 +x))))dx

$$\int\frac{\left({x}−\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}}}{dx} \\ $$

Question Number 36545    Answers: 2   Comments: 6

∫((2x+1)/((x^2 +4x+1)^(3/2) ))dx

$$\int\frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx} \\ $$

Question Number 36544    Answers: 1   Comments: 0

∫(dx/(tanx+cotx+secx+cosecx))

$$\int\frac{{dx}}{{tanx}+{cotx}+{secx}+{cosecx}} \\ $$

Question Number 36543    Answers: 0   Comments: 0

∫cot^(−1) (x^2 +x+1) dx

$$\int{cot}^{−\mathrm{1}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\:{dx} \\ $$

Question Number 36541    Answers: 0   Comments: 1

∫(x+(√(1+x^2 )) )^n dx

$$\int\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\right)^{{n}} {dx} \\ $$

Question Number 36538    Answers: 0   Comments: 1

∫(dx/((a+bx^2 )(√(b−ax^2 ))))

$$\int\frac{{dx}}{\left({a}+{bx}^{\mathrm{2}} \right)\sqrt{{b}−{ax}^{\mathrm{2}} \:}}\:\: \\ $$

Question Number 36537    Answers: 0   Comments: 3

  Pg 287      Pg 288      Pg 289      Pg 290      Pg 291      Pg 292      Pg 293      Pg 294      Pg 295      Pg 296   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com