Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 290

Question Number 37291    Answers: 0   Comments: 1

calculate g(θ) = ∫_(−∞) ^(+∞) e^(−x^2 ) sin(sinθ x^2 )dx .

$${calculate}\:{g}\left(\theta\right)\:=\:\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } \:{sin}\left({sin}\theta\:{x}^{\mathrm{2}} \right){dx}\:. \\ $$

Question Number 37290    Answers: 0   Comments: 0

find f(θ) = ∫_(−∞) ^(+∞) e^(−x^2 ) cos(cosθx)dx .

$${find}\:\:{f}\left(\theta\right)\:=\:\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } \:{cos}\left({cos}\theta{x}\right){dx}\:. \\ $$

Question Number 37289    Answers: 0   Comments: 0

calculate ∫_0 ^(2π) (dx/(cos^2 t +4sin^2 t))dt .

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\:\frac{{dx}}{{cos}^{\mathrm{2}} {t}\:\:+\mathrm{4}{sin}^{\mathrm{2}} {t}}{dt}\:. \\ $$

Question Number 37288    Answers: 0   Comments: 1

calculate f(α) = ∫_(−∞) ^(+∞) ((cos(2x))/(1+ax^2 )) dx with a>0 2) find the value of ∫_(−∞) ^(+∞) ((cos(2x))/(1+3x^2 )) dx .

$${calculate}\:\:{f}\left(\alpha\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{ax}^{\mathrm{2}} }\:{dx}\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+\mathrm{3}{x}^{\mathrm{2}} }\:{dx}\:. \\ $$

Question Number 37287    Answers: 0   Comments: 1

calculate f(t) = ∫_(−∞) ^(+∞) ((cos(tx))/(1+x^2 )) dx

$${calculate}\:\:{f}\left({t}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left({tx}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$

Question Number 37285    Answers: 0   Comments: 3

let A_n = ∫_0 ^∞ e^(−nx^2 ) sin((x/n))dx with n integr not 0 1) calculate A_n 2) find lim_(n→+∞) A_n

$${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{nx}^{\mathrm{2}} } {sin}\left(\frac{{x}}{{n}}\right){dx}\:\:{with}\:{n}\:{integr}\:{not}\:\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$

Question Number 37284    Answers: 0   Comments: 1

find A_n = ∫_0 ^1 (x^n /(ch(x))) dx .

$${find}\:\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{{n}} }{{ch}\left({x}\right)}\:{dx}\:. \\ $$

Question Number 37283    Answers: 0   Comments: 1

find ∫_0 ^∞ ((cosx)/(ch(x))) dx .

$${find}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{cosx}}{{ch}\left({x}\right)}\:{dx}\:. \\ $$

Question Number 37281    Answers: 0   Comments: 1

find a better approximation for the integrals 1) ∫_0 ^1 e^(−x^2 ) dx 2) ∫_1 ^(+∞) e^(−x^2 ) dx .

$${find}\:{a}\:{better}\:{approximation}\:{for}\:{the} \\ $$$${integrals}\: \\ $$$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{−{x}^{\mathrm{2}} } {dx} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{1}} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}\:. \\ $$

Question Number 37280    Answers: 0   Comments: 1

calculate ∫_0 ^6 (e^(x−[x]) /(1+e^x ))dx .

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{6}} \:\:\:\frac{{e}^{{x}−\left[{x}\right]} }{\mathrm{1}+{e}^{{x}} }{dx}\:. \\ $$

Question Number 37279    Answers: 1   Comments: 1

cslculate ∫∫_([0,1]^2 ) (x−y)e^(−x−y) dxdy .

$${cslculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\left({x}−{y}\right){e}^{−{x}−{y}} {dxdy}\:. \\ $$

Question Number 37278    Answers: 0   Comments: 1

calculate ∫∫_D x cos(x^2 +y^2 )dxdy with D={(x,y)∈R^2 / 0≤x≤1 and 1≤y≤3}

$$\:{calculate}\:\int\int_{{D}} \:{x}\:{cos}\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){dxdy} \\ $$$${with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\right. \\ $$$$\left.\mathrm{1}\leqslant{y}\leqslant\mathrm{3}\right\} \\ $$

Question Number 37276    Answers: 0   Comments: 0

calculate I_n =∫_0 ^4 (−1)^([x]) (x^n −x)dx

$${calculate}\:\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{4}} \:\left(−\mathrm{1}\right)^{\left[{x}\right]} \left({x}^{{n}} \:−{x}\right){dx} \\ $$

Question Number 37275    Answers: 0   Comments: 0

let A_n = ∫_0 ^(1/n) arctan(1+x^2 )dx 1) calculate A_n 2)find lim_(n→+∞) A_n .

$${let}\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{arctan}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \:. \\ $$

Question Number 37272    Answers: 0   Comments: 0

let f(x)=cos(x−e^(−x) ) developp f at integr serie.

$${let}\:{f}\left({x}\right)={cos}\left({x}−{e}^{−{x}} \right) \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$

Question Number 37271    Answers: 0   Comments: 2

find A_n =∫_1 ^2 ( 1 +(1/x) +(1/x^2 ) +...+(1/x^n ))^2 dx

$${find}\:\:{A}_{{n}} =\int_{\mathrm{1}} ^{\mathrm{2}} \left(\:\mathrm{1}\:+\frac{\mathrm{1}}{{x}}\:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:+...+\frac{\mathrm{1}}{{x}^{{n}} }\right)^{\mathrm{2}} {dx} \\ $$

Question Number 37270    Answers: 1   Comments: 0

find ∫_0 ^1 (((1−x^(n+1) )/(1−x)))^2 dx .

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}−{x}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}}\right)^{\mathrm{2}} {dx}\:. \\ $$

Question Number 37258    Answers: 1   Comments: 0

∫ ((x^3 +1)/(√(x^2 +x))) dx = ?

$$\int\:\frac{{x}^{\mathrm{3}} +\mathrm{1}}{\sqrt{{x}^{\mathrm{2}} +{x}}}\:{dx}\:=\:? \\ $$

Question Number 37540    Answers: 1   Comments: 0

For x>1 , ∫ sin^(−1) (((2x)/(1+x^2 )))dx = ?

$$\mathrm{For}\:{x}>\mathrm{1}\:,\: \\ $$$$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx}\:=\:? \\ $$

Question Number 37243    Answers: 0   Comments: 0

find f (t) =∫_0 ^∞ e^x ln(1+e^(−tx) )dx with t >0 . 2) let u_n = ∫_0 ^∞ e^x ln(1+e^(−nx) ) dx find lim_(n→+∞) u_n .

$${find}\:{f}\:\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{{x}} {ln}\left(\mathrm{1}+{e}^{−{tx}} \right){dx}\:{with}\:{t}\:>\mathrm{0}\:. \\ $$$$\left.\mathrm{2}\right)\:{let}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{{x}} {ln}\left(\mathrm{1}+{e}^{−{nx}} \right)\:{dx} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} \:. \\ $$

Question Number 37237    Answers: 1   Comments: 1

calculate ∫_0 ^(π/2) ((cosθ.sinθ)/(cosθ +sinθ)) dθ .

$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{cos}\theta.{sin}\theta}{{cos}\theta\:+{sin}\theta}\:{d}\theta\:. \\ $$

Question Number 37236    Answers: 0   Comments: 0

calculate ∫_0 ^(2π) ∣sin(((kt)/2))∣ dt with k integr and k≥3

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mid{sin}\left(\frac{{kt}}{\mathrm{2}}\right)\mid\:{dt}\:\:{with}\:{k}\:{integr} \\ $$$${and}\:{k}\geqslant\mathrm{3} \\ $$

Question Number 37235    Answers: 1   Comments: 0

calculate ∫_0 ^(π/2) (√(4sin^2 t +cos^2 (t))) dt

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{4}{sin}^{\mathrm{2}} {t}\:+{cos}^{\mathrm{2}} \left({t}\right)}\:\:{dt} \\ $$

Question Number 37233    Answers: 0   Comments: 0

calculate ∫_(−∞) ^(+∞) (((1+ix)/(1−ix)))^(m−n) (dx/(1+x^2 )) dx with m and n integrs

$${calculate} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\left(\frac{\mathrm{1}+{ix}}{\mathrm{1}−{ix}}\right)^{{m}−{n}} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:{with}\:{m}\:{and}\:{n} \\ $$$${integrs}\: \\ $$

Question Number 37225    Answers: 0   Comments: 0

let n≥2 and f : R_n [x]→R_2 [x] / f(p) =xp(1) +(x^2 −4)p(0) 1) prove that f is linear 2) find dim Kerf and dimIm(f)

$${let}\:{n}\geqslant\mathrm{2}\:{and}\:{f}\:\::\:{R}_{{n}} \left[{x}\right]\rightarrow{R}_{\mathrm{2}} \left[{x}\right]\:/ \\ $$$${f}\left({p}\right)\:={xp}\left(\mathrm{1}\right)\:+\left({x}^{\mathrm{2}} \:−\mathrm{4}\right){p}\left(\mathrm{0}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}\:{is}\:{linear} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{dim}\:{Kerf}\:{and}\:{dimIm}\left({f}\right) \\ $$

Question Number 37224    Answers: 0   Comments: 0

let p(x)=(1+jx)^n −(1−jx)^n with j=e^(i((2π)/3)) find p at form r(x)e^(iθ(x)) 2) calculate ∫_0 ^1 r(x) e^(iθ(x)) dx .

$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{jx}\right)^{{n}} \:−\left(\mathrm{1}−{jx}\right)^{{n}} \:{with} \\ $$$${j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:\:{find}\:{p}\:{at}\:\:{form}\:{r}\left({x}\right){e}^{{i}\theta\left({x}\right)} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {r}\left({x}\right)\:{e}^{{i}\theta\left({x}\right)} {dx}\:. \\ $$

  Pg 285      Pg 286      Pg 287      Pg 288      Pg 289      Pg 290      Pg 291      Pg 292      Pg 293      Pg 294   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com