Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 290
Question Number 37258 Answers: 1 Comments: 0
$$\int\:\frac{{x}^{\mathrm{3}} +\mathrm{1}}{\sqrt{{x}^{\mathrm{2}} +{x}}}\:{dx}\:=\:? \\ $$
Question Number 37540 Answers: 1 Comments: 0
$$\mathrm{For}\:{x}>\mathrm{1}\:,\: \\ $$$$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx}\:=\:? \\ $$
Question Number 37243 Answers: 0 Comments: 0
$${find}\:{f}\:\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{{x}} {ln}\left(\mathrm{1}+{e}^{−{tx}} \right){dx}\:{with}\:{t}\:>\mathrm{0}\:. \\ $$$$\left.\mathrm{2}\right)\:{let}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{{x}} {ln}\left(\mathrm{1}+{e}^{−{nx}} \right)\:{dx} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} \:. \\ $$
Question Number 37237 Answers: 1 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{cos}\theta.{sin}\theta}{{cos}\theta\:+{sin}\theta}\:{d}\theta\:. \\ $$
Question Number 37236 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mid{sin}\left(\frac{{kt}}{\mathrm{2}}\right)\mid\:{dt}\:\:{with}\:{k}\:{integr} \\ $$$${and}\:{k}\geqslant\mathrm{3} \\ $$
Question Number 37235 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{4}{sin}^{\mathrm{2}} {t}\:+{cos}^{\mathrm{2}} \left({t}\right)}\:\:{dt} \\ $$
Question Number 37233 Answers: 0 Comments: 0
$${calculate} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\left(\frac{\mathrm{1}+{ix}}{\mathrm{1}−{ix}}\right)^{{m}−{n}} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:{with}\:{m}\:{and}\:{n} \\ $$$${integrs}\: \\ $$
Question Number 37225 Answers: 0 Comments: 0
$${let}\:{n}\geqslant\mathrm{2}\:{and}\:{f}\:\::\:{R}_{{n}} \left[{x}\right]\rightarrow{R}_{\mathrm{2}} \left[{x}\right]\:/ \\ $$$${f}\left({p}\right)\:={xp}\left(\mathrm{1}\right)\:+\left({x}^{\mathrm{2}} \:−\mathrm{4}\right){p}\left(\mathrm{0}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}\:{is}\:{linear} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{dim}\:{Kerf}\:{and}\:{dimIm}\left({f}\right) \\ $$
Question Number 37224 Answers: 0 Comments: 0
$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{jx}\right)^{{n}} \:−\left(\mathrm{1}−{jx}\right)^{{n}} \:{with} \\ $$$${j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:\:{find}\:{p}\:{at}\:\:{form}\:{r}\left({x}\right){e}^{{i}\theta\left({x}\right)} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {r}\left({x}\right)\:{e}^{{i}\theta\left({x}\right)} {dx}\:. \\ $$
Question Number 37179 Answers: 0 Comments: 4
$$\int\:\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} }\:{dx}\:=\:? \\ $$
Question Number 37171 Answers: 0 Comments: 0
Question Number 37143 Answers: 0 Comments: 0
$$\mathrm{Why}\:\mathrm{are}\:\mathrm{following}\:\mathrm{statements}\:\mathrm{wrong}? \\ $$$$\left.\mathrm{a}\right)\:\mathrm{There}\:\mathrm{exists}\:\mathrm{a}\:\mathrm{function}\:\mathrm{with}\:\mathrm{domain}\: \\ $$$$\mathrm{R}\:\mathrm{satisfying}\:\mathrm{f}\left(\mathrm{x}\right)<\mathrm{0}\:\forall\mathrm{x}\:,\:\mathrm{f}'\left(\mathrm{x}\right)>\mathrm{0}\forall\mathrm{x}\:\mathrm{and} \\ $$$$\mathrm{f}''\left(\mathrm{x}\right)>\mathrm{0}\forall\mathrm{x}. \\ $$$$ \\ $$$$\left.\mathrm{b}\right)\:\mathrm{If}\:\mathrm{f}''\left(\mathrm{c}\right)=\mathrm{0}\:\mathrm{then}\:\left(\mathrm{c},\mathrm{f}\left(\mathrm{c}\right)\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{inflection} \\ $$$$\mathrm{point}. \\ $$
Question Number 37108 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{4}{x}+\mathrm{8cos}\:{x}+\mathrm{tan}\:{x}−\mathrm{2sec}\:{x}−\mathrm{4log}\:\left\{\mathrm{cos}{x}\left(\mathrm{1}+\mathrm{sin}\:{x}\right)\right\}\geqslant\mathrm{6} \\ $$$$\forall\:{x}\:\epsilon\:\left[\mathrm{0},\psi\right)\:\mathrm{then}\:\mathrm{largest}\:\mathrm{value}\:\mathrm{of}\:\psi\:\mathrm{is}\:? \\ $$
Question Number 37079 Answers: 1 Comments: 0
Question Number 37071 Answers: 2 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{xdx}}{\mathrm{1}+{cosx}} \\ $$
Question Number 37067 Answers: 2 Comments: 1
$${find}\:\int\:\:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$
Question Number 37036 Answers: 0 Comments: 3
$$\int_{\mathrm{0}} ^{\:\:{a}} \left(\mathrm{1}−\frac{{b}−{x}}{\sqrt{\left({b}−{x}\right)^{\mathrm{2}} +{cx}}}\right)\:{dx}\:=\:? \\ $$
Question Number 37028 Answers: 1 Comments: 0
$$\int\frac{\mathrm{2}{x}−\mathrm{1}}{\mathrm{5}{x}^{\mathrm{2}} −{x}+\mathrm{2}}\:{dx}\:\:=\:\:? \\ $$
Question Number 37018 Answers: 3 Comments: 3
Question Number 37004 Answers: 3 Comments: 0
Question Number 36997 Answers: 2 Comments: 1
$$\int\:\sqrt{\frac{\mathrm{1}+{x}}{{x}}\:}{dx}\:=\:? \\ $$
Question Number 36965 Answers: 2 Comments: 3
$$\int\frac{{x}^{\mathrm{5}} −{x}^{\mathrm{4}} +{x}^{\mathrm{3}} −\mathrm{1}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx}= \\ $$
Question Number 36957 Answers: 2 Comments: 0
$$\mathrm{Interval}\:\mathrm{in}\:\mathrm{which}\:\mathrm{given}\:\mathrm{function}\:\mathrm{is} \\ $$$${decreasing}. \\ $$$$\mathrm{f}\left({x}\right)=\:\left(\mathrm{2}^{{x}} −\mathrm{1}\right)\left(\mathrm{2}^{{x}} −\mathrm{2}\right)^{\mathrm{2}} \\ $$
Question Number 36946 Answers: 0 Comments: 2
$${calculate}\varphi\left(\lambda\right)=\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\:\frac{{cos}\left({t}\right)}{\mathrm{1}−\mathrm{2}\lambda\:{cost}\:+\lambda^{\mathrm{2}} }\:{dt} \\ $$
Question Number 36945 Answers: 0 Comments: 0
$${calulate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{dx}}{\sqrt{{tan}\left({x}\right)\left(\mathrm{1}−{tanx}\right)}} \\ $$
Question Number 36944 Answers: 1 Comments: 1
$${find}\:\varphi\left({a}\right)\:=\:\int_{{a}} ^{+\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} \:−{a}^{\mathrm{2}} }}\:\:\:{with}\:{a}>\mathrm{0} \\ $$
Pg 285 Pg 286 Pg 287 Pg 288 Pg 289 Pg 290 Pg 291 Pg 292 Pg 293 Pg 294
Terms of Service
Privacy Policy
Contact: info@tinkutara.com