Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 290
Question Number 37349 Answers: 0 Comments: 1
$${calculate}\:\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{{dt}}{\mathrm{1}−\mathrm{2}{pcost}\:+{p}^{\mathrm{2}} }\:\:{if}\:\mid{p}\mid<\mathrm{1} \\ $$
Question Number 37348 Answers: 0 Comments: 2
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{dt}}{{p}\:+{cost}}\:\:{with}\:{p}>\mathrm{1} \\ $$
Question Number 37347 Answers: 1 Comments: 2
$${let}\:{r}\:=\sqrt{{p}^{\mathrm{2}} \:+{q}^{\mathrm{2}} }\:\:\:{p}\:{and}\:{q}\:{from}\:{R}\:\:{and}\:{p}>\mathrm{0}\:\:{q}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:{e}^{−{px}} \:\frac{{cos}\left({px}\right)}{\sqrt{{x}}}{dx}=\frac{\sqrt{\pi}}{{r}}\sqrt{\frac{{r}+{p}}{\mathrm{2}}} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{px}} \:\:\frac{{sin}\left({qx}\right)}{\sqrt{{x}}}{dx}\:=\frac{\sqrt{\pi}}{{r}}\:\sqrt{\frac{{r}−{p}}{\mathrm{2}}} \\ $$
Question Number 37346 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dt}}{{a}\:{cos}^{\mathrm{2}} {t}\:+{b}\:{sin}^{\mathrm{2}} {t}} \\ $$$${with}\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0}\:. \\ $$
Question Number 37345 Answers: 0 Comments: 0
$${calculate}\:{I}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{\mathrm{1}+{acost}}{\mathrm{1}+\mathrm{2}{acost}\:+{a}^{\mathrm{2}} }{dt}\:\: \\ $$$$\left.\mathrm{1}\right)\:{if}\:\:\mid{a}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{if}\:\mid{a}\mid>\mathrm{1} \\ $$
Question Number 37343 Answers: 0 Comments: 3
$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right){dt}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}+{t}^{\mathrm{2}} \right){dt}\:. \\ $$
Question Number 37338 Answers: 0 Comments: 1
$${calculate}\:\:{B}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:{sh}^{{n}} {xdx}\:. \\ $$
Question Number 37337 Answers: 0 Comments: 1
$${calculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ch}^{{n}} {xdx}\:. \\ $$
Question Number 37317 Answers: 2 Comments: 4
$$\int\:\frac{\mathrm{acos}\:{x}+{b}}{\left({a}+{b}\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}\:=\:? \\ $$
Question Number 37316 Answers: 1 Comments: 0
$$\int\:\frac{{x}^{\mathrm{2}} }{\left({x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}\:=\:? \\ $$
Question Number 37310 Answers: 1 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)\left({x}^{\mathrm{2}} \:+\mathrm{9}\right)}\:. \\ $$
Question Number 37309 Answers: 1 Comments: 2
$${calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:{dx}\:. \\ $$
Question Number 37307 Answers: 0 Comments: 1
$${calculate}\:\:\:\int_{\gamma} \:\:\:\:\frac{{dz}}{{z}}\:\:\:{with}\:\gamma\:=\left\{{z}\in{C}\:/\mid{z}\mid=\mathrm{1}\right\}\:. \\ $$
Question Number 37306 Answers: 0 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:{e}^{{ix}} \:\:\:\frac{{x}−{i}}{\left({x}+{i}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)}\:{dx}\:. \\ $$$$ \\ $$
Question Number 37304 Answers: 0 Comments: 1
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{5}+{e}^{{ix}} }{\left(\mathrm{3}+{e}^{{ix}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\:. \\ $$
Question Number 37303 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\gamma} \:\:\:\:\:\:\frac{{dz}}{{z}^{\mathrm{3}} \:+\mathrm{8}}\:{in}\:{those}\:{cases} \\ $$$$\left.\mathrm{1}\right)\:\gamma\:=\left\{{z}\in{C}\:/\:\mid{z}\mid\:=\mathrm{1}\right\} \\ $$$$\left.\mathrm{2}\right)\:\gamma\:=\left\{{z}\in{C}\:/\:\mid{z}\mid\:=\mathrm{3}\right\} \\ $$
Question Number 37302 Answers: 0 Comments: 0
$${let}\:\gamma\:=\:\left\{{z}\in{C}\:/\:\mid{z}\mid\:=\mathrm{4}\right\}\: \\ $$$${calculate}\:\:\int_{\gamma} \:\:\:\:\:\frac{{dz}}{{z}\:{sinz}}\:{in}\:{the}\:{positif}\:{sens}. \\ $$
Question Number 37301 Answers: 0 Comments: 0
$${find}?{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\left(\mathrm{2}{x}+\mathrm{1}\right){e}^{−{x}^{\mathrm{2}} } }{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }\:{dx}\:. \\ $$
Question Number 37300 Answers: 0 Comments: 1
$${let}\:{f}\left({z}\right)=\frac{\left(\mathrm{1}−{z}^{\mathrm{2}} \right){e}^{\mathrm{2}{z}} }{{z}^{\mathrm{3}} } \\ $$$${calculate}\:{Res}\left({f},\:\mathrm{0}\right) \\ $$
Question Number 37299 Answers: 0 Comments: 1
$${calculate}\:\:\int_{{C}} \:\:\:\frac{\mathrm{9}\left({z}^{\mathrm{2}} \:+\mathrm{2}\right)}{{z}\left({z}+\mathrm{1}\right)^{\mathrm{3}} \left({z}−\mathrm{2}\right)}{dz}\:\:{with}\:\:{C}\:{is}\:{the} \\ $$$${circle}\:{C}\:=\left\{{z}\in{C}/\:\mid{z}\mid\:=\mathrm{3}\right\}\: \\ $$
Question Number 37298 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\gamma} \:\:\:\:\frac{{z}+\mathrm{1}}{{z}\left({z}−\mathrm{1}\right)\left({z}+\mathrm{2}\right)}{dz}\:\:{with}\:\gamma\:{is}\:{the} \\ $$$${circle}\:\gamma\:=\left\{{z}\in{C}/\:\:\mid{z}\mid\:=\frac{\mathrm{3}}{\mathrm{2}}\right\} \\ $$
Question Number 37297 Answers: 0 Comments: 1
$${calculate}\:\:\int_{{C}} \:\:\:\:\frac{{z}}{{z}^{\mathrm{2}} \:+\mathrm{1}}{dz}\:\:{with}\:{C}=\left\{{z}\in{C}/\mid{z}\mid=\frac{\mathrm{1}}{\mathrm{2}}\right\} \\ $$
Question Number 37291 Answers: 0 Comments: 1
$${calculate}\:{g}\left(\theta\right)\:=\:\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } \:{sin}\left({sin}\theta\:{x}^{\mathrm{2}} \right){dx}\:. \\ $$
Question Number 37290 Answers: 0 Comments: 0
$${find}\:\:{f}\left(\theta\right)\:=\:\int_{−\infty} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } \:{cos}\left({cos}\theta{x}\right){dx}\:. \\ $$
Question Number 37289 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\:\frac{{dx}}{{cos}^{\mathrm{2}} {t}\:\:+\mathrm{4}{sin}^{\mathrm{2}} {t}}{dt}\:. \\ $$
Question Number 37288 Answers: 0 Comments: 1
$${calculate}\:\:{f}\left(\alpha\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{ax}^{\mathrm{2}} }\:{dx}\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+\mathrm{3}{x}^{\mathrm{2}} }\:{dx}\:. \\ $$
Pg 285 Pg 286 Pg 287 Pg 288 Pg 289 Pg 290 Pg 291 Pg 292 Pg 293 Pg 294
Terms of Service
Privacy Policy
Contact: info@tinkutara.com