Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 290
Question Number 35603 Answers: 0 Comments: 0
$${let}\:{x}\:\in\:{R}\:\:{and}\:\left\{{x}\right\}={x}\:−\left[{x}\right] \\ $$$${prove}\:{that}\:\:\int_{\mathrm{1}} ^{+\infty} \:\frac{\left\{{x}\right\}}{{x}^{\mathrm{2}} }\:{dx}\:{is}\:{convergent}\:{and}\:{find} \\ $$$${its}\:{value}\:. \\ $$
Question Number 35593 Answers: 0 Comments: 0
$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\:{t}^{\mathrm{2}} \:+\frac{{a}}{{t}^{\mathrm{2}} }\right)} {dt}\:{witha}>\mathrm{0} \\ $$$${find}\:{the}\:{value}\:{of}\:{f}\left({a}\right). \\ $$
Question Number 35590 Answers: 0 Comments: 0
$${find}\:\:{J}\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{−{ax}} {ln}\left(\mathrm{1}+{e}^{−{bx}} \right){dx}\:{with}\:{a}>\mathrm{0}\:{and} \\ $$$${b}>\mathrm{0}\:. \\ $$
Question Number 35589 Answers: 0 Comments: 1
$${let}\:\:\:{I}\:\:=\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{tx}} \:\mid{sint}\mid{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$${find}\:{the}\:{value}\:{of}\:{I}\:. \\ $$
Question Number 35588 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\frac{{sinx}\:{cos}\left({cosx}\right)}{\mathrm{1}+\mathrm{2}{sin}\left({cosx}\right)}{dx} \\ $$
Question Number 35587 Answers: 0 Comments: 0
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{e}^{−{t}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right)\:. \\ $$
Question Number 35586 Answers: 0 Comments: 0
$${find}\:{the}\:{value}\:{of}\: \\ $$$${f}\left(\alpha\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{arctan}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:{with}\:\alpha\:{from}\:{R}\:. \\ $$
Question Number 35585 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:{sin}\left({cost}\right){dt} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$
Question Number 35584 Answers: 0 Comments: 0
$${let}\:\:{f}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{arctan}\left({e}^{−{tx}^{\mathrm{2}} } \right)}{{x}^{\mathrm{2}} }\:{dx}\:{with}\:{t}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{study}\:\:{the}\:{existence}\:{of}\:\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({t}\right) \\ $$
Question Number 35583 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \:\sqrt{{x}−{sinx}}\:{dx} \\ $$
Question Number 35582 Answers: 0 Comments: 0
$${let}\:{g}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}+{sinx}}\:\:\:\:,\:\mathrm{2}\pi\:{periodic}\:{odd} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$
Question Number 35581 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:=\:\:\frac{\mathrm{3}}{\mathrm{1}+\mathrm{2}{cosx}}\:\:,\:\mathrm{2}\pi\:{periodic}\:{even} \\ $$$${developp}\:{f}\:\:{at}\:{fourier}\:{serie}. \\ $$$$ \\ $$
Question Number 35580 Answers: 0 Comments: 0
$${if}\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{cosx}}\:=\:\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} \:{cos}\left({nx}\right)\:\:{calculate}\:{a}_{\mathrm{0}} \\ $$$${and}\:{a}_{{n}} \\ $$
Question Number 35551 Answers: 0 Comments: 1
Question Number 35550 Answers: 0 Comments: 0
Question Number 35549 Answers: 0 Comments: 1
Question Number 35548 Answers: 0 Comments: 0
Question Number 35547 Answers: 0 Comments: 0
Question Number 35546 Answers: 0 Comments: 0
Question Number 35545 Answers: 0 Comments: 0
Question Number 35544 Answers: 0 Comments: 1
Question Number 35543 Answers: 0 Comments: 0
Question Number 35541 Answers: 0 Comments: 3
Question Number 35471 Answers: 0 Comments: 0
$$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}={area}\:{under}\:{the}\:{curve}\:{but}\:{say}\:{why} \\ $$$${what}\:{is}\:{the}\:{meaning}\:{of}\:\int\:\leftarrow{this}\:{sign} \\ $$
Question Number 35456 Answers: 2 Comments: 0
$$\int\frac{{dx}}{{x}\left({x}^{\mathrm{2018}} +\mathrm{1}\right)} \\ $$
Question Number 35440 Answers: 1 Comments: 2
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{2}{x}^{\mathrm{2}} \:\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Pg 285 Pg 286 Pg 287 Pg 288 Pg 289 Pg 290 Pg 291 Pg 292 Pg 293 Pg 294
Terms of Service
Privacy Policy
Contact: info@tinkutara.com