Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 280
Question Number 40399 Answers: 3 Comments: 0
$$\mathrm{Solve}\:: \\ $$$$\left(\mathrm{2}\sqrt{{xy}}\:−{x}\right){dy}\:+\:{ydx}\:=\:\mathrm{0}. \\ $$
Question Number 40397 Answers: 1 Comments: 0
$$\mathrm{Solve}\:: \\ $$$$\frac{\mathrm{dy}}{{dx}}\:=\:\frac{\mathrm{sin}\:{y}\:+\:{x}}{\mathrm{sin}\:\mathrm{2}{y}\:−\:{x}\mathrm{cos}\:{y}}\:. \\ $$
Question Number 40380 Answers: 2 Comments: 1
$${S}\mathrm{olve}\::\:\:\:\:\:\frac{\mathrm{dy}}{\mathrm{d}{x}}\:=\:\frac{{x}+{y}}{{x}−{y}} \\ $$
Question Number 40467 Answers: 1 Comments: 2
$$\int\mathrm{ln}\:\mid\sqrt{{x}+\mathrm{1}}+\sqrt{{x}}\mid\:{dx}= \\ $$
Question Number 40322 Answers: 1 Comments: 4
$$\mathrm{Solve}\:: \\ $$$$\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{d}{x}^{\mathrm{2}} }\:=\:\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \\ $$
Question Number 40270 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{one}\:``\mathrm{leaf}''\:\mathrm{of} \\ $$$${r}=\mathrm{sin}\:{n}\theta \\ $$$${n}\in\mathbb{N} \\ $$
Question Number 40251 Answers: 1 Comments: 0
$$\mathrm{1}.\:\:\:\:\:\int\frac{{d}\alpha}{\mathrm{sin}\:\mathrm{2}\alpha\:+\mathrm{tan}\:\mathrm{3}\alpha}=? \\ $$$$\mathrm{2}.\:\:\:\:\:\int\frac{{d}\beta}{\mathrm{cos}\:\mathrm{2}\beta\:+\mathrm{cos}\:\mathrm{3}\beta}=? \\ $$$$\mathrm{3}.\:\:\:\:\:\int\frac{{d}\gamma}{\mathrm{sinh}\:\mathrm{2}\gamma\:+\mathrm{tanh}\:\mathrm{3}\gamma}=? \\ $$$$\mathrm{4}.\:\:\:\:\:\int\frac{{d}\delta}{\mathrm{cosh}\:\mathrm{2}\delta\:+\mathrm{cosh}\:\mathrm{3}\delta}=? \\ $$
Question Number 40161 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{sin}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}{{ln}\left(\mathrm{1}+\sqrt{{x}}\right)}{dx} \\ $$
Question Number 40160 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}−{e}^{−{t}} }{{t}\sqrt{{t}}}\:{dt} \\ $$
Question Number 40159 Answers: 0 Comments: 1
$${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{{n}} } \\ $$$${find}\:{a}\:{relation}\:{etween}\:{I}_{{n}} \:{and}\:{I}_{{n}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{\mathrm{1}\:} \:{and}\:{I}_{\mathrm{2}} \\ $$
Question Number 40158 Answers: 0 Comments: 3
$${let}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} \:{ln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{justify}\:{the}\:{existence}\:{of}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{A}_{{n}+\mathrm{1}} \:−{A}_{{n}} \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\Rightarrow\mathrm{0}<\frac{{xln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}<\frac{\mathrm{1}}{\mathrm{2}}\:\:\right. \\ $$$$\left.\mathrm{4}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {A}_{{n}} \\ $$
Question Number 40157 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:−\mathrm{2}{t}\:+\mathrm{2}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$
Question Number 40156 Answers: 1 Comments: 1
$${find}\:\:\:\int_{{e}^{\mathrm{2}} } ^{+\infty} \:\:\:\:\frac{{dt}}{{tln}\left({t}\right){ln}\left({ln}\left({t}\right)\right.} \\ $$
Question Number 40155 Answers: 1 Comments: 1
$${caoculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}\:{dt}}{\left(\mathrm{1}+{t}^{\mathrm{4}} \right)^{\mathrm{2}} } \\ $$
Question Number 40154 Answers: 1 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$
Question Number 40153 Answers: 1 Comments: 1
$${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\frac{{t}−\mathrm{2}}{\sqrt{{t}^{\mathrm{2}} \:−\mathrm{1}}}{dt} \\ $$
Question Number 40152 Answers: 1 Comments: 1
$${let}\:\:{f}\left({x}\right)\:=\:\:\int_{−\mathrm{1}} ^{{x}} \:\:\:\:\frac{{e}^{{t}} }{\sqrt{\mathrm{1}−{e}^{{t}} }}{dt}\:\:\:{with}\:{x}<\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\int_{−\mathrm{1}} ^{\mathrm{0}} \:\:\frac{{e}^{{t}} }{\sqrt{\mathrm{1}−{e}^{{t}} }}{dt} \\ $$
Question Number 40151 Answers: 1 Comments: 1
$${let}\:{F}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left({xsint}\right){dt} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\forall{u}\:\in{R}\:\:\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:\leqslant{cosu}\leqslant\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{{u}^{\mathrm{4}} }{\mathrm{24}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\right)\leqslant{F}\left({x}\right)\leqslant\:\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:+\frac{{x}^{\mathrm{4}} }{\mathrm{64}}\right) \\ $$
Question Number 40150 Answers: 0 Comments: 1
$${let}\:{f}_{{n}} \left({x}\right)\:=\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{{n}} \right)^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} }\:\:\:{ddfined}\:{on}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}_{{n}} \rightarrow^{{cs}} \:{f}\:\left({n}\rightarrow+\infty\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}_{{n}} \left({x}\right){dx} \\ $$$$ \\ $$
Question Number 40149 Answers: 0 Comments: 1
$${let}\:{u}_{{n}} =\:\frac{\mathrm{1}}{\sqrt{{n}}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\sqrt{{n}+\mathrm{4}{k}}} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \\ $$
Question Number 40148 Answers: 3 Comments: 0
$${let}\:\:{f}\left({x}\right)=\:\frac{{x}^{\mathrm{3}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}\left({x}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{let}\:\:{S}_{{n}} =\:\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\:\:\frac{{k}^{\mathrm{3}} }{\sqrt{\left(\mathrm{1}+\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} \right)^{\mathrm{3}} }} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:{S}_{{n}} \\ $$
Question Number 40147 Answers: 0 Comments: 2
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\:\sqrt{{x}^{\mathrm{3}} \left(\mathrm{2}−{x}\right)}{dx} \\ $$
Question Number 40146 Answers: 1 Comments: 1
$${find}\:\:\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\sqrt{\mathrm{4}{x}^{\mathrm{2}} \:−\mathrm{1}}\:+\sqrt{\mathrm{4}{x}^{\mathrm{2}} \:+\mathrm{1}}} \\ $$
Question Number 40145 Answers: 1 Comments: 1
$${calculate}\:\int_{−\mathrm{7}} ^{−\mathrm{3}} \:\:\:\frac{\left({x}−\mathrm{1}\right){dx}}{\sqrt{{x}^{\mathrm{2}} \:+\mathrm{2}{x}−\mathrm{3}}} \\ $$
Question Number 40144 Answers: 1 Comments: 0
$${find}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} {x}\sqrt{{x}^{\mathrm{2}} \:−\mathrm{2}{x}\:+\mathrm{5}}\:{dx} \\ $$
Question Number 40143 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\frac{{tan}\left({x}\right){dx}}{\sqrt{\mathrm{2}}{cos}\left({x}\right)\:+\mathrm{2}{sin}^{\mathrm{2}} \left({x}\right)} \\ $$
Pg 275 Pg 276 Pg 277 Pg 278 Pg 279 Pg 280 Pg 281 Pg 282 Pg 283 Pg 284
Terms of Service
Privacy Policy
Contact: info@tinkutara.com