Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 280
Question Number 39020 Answers: 1 Comments: 0
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}\right)}{\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}}\:{dx} \\ $$
Question Number 39019 Answers: 1 Comments: 3
$${calculate}\:\int\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{2}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)} \\ $$
Question Number 39017 Answers: 0 Comments: 1
$${find}\:\:\:\int\:\:\frac{−\mathrm{2}{x}+\mathrm{3}}{{x}^{\mathrm{2}} \left(\:{x}^{\mathrm{3}} \:+\mathrm{8}\right)}{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{−\mathrm{2}{x}+\mathrm{3}}{{x}^{\mathrm{2}} \left({x}^{\mathrm{3}} \:+\mathrm{8}\right)}{dx} \\ $$
Question Number 39016 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{sin}\left({nx}\right)}{{cosx}}{dx}\:\:{with}\:{n}\:{from}\:{N}\:. \\ $$
Question Number 39015 Answers: 0 Comments: 2
$${find}\:\:\int\:\:\:\:\:\:\frac{{dx}}{{x}\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{3}{x}+\mathrm{2}\right)} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\:\frac{{dx}}{{x}\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{3}{x}+\mathrm{2}\right)} \\ $$
Question Number 38946 Answers: 0 Comments: 0
$${find}\:\int\:{arcos}\left(\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx}\:. \\ $$
Question Number 38899 Answers: 0 Comments: 4
$${find}\:\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{2}+{cost}\right){dt}\:{and}\:\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{2}−{cost}\right){dt} \\ $$
Question Number 38897 Answers: 0 Comments: 0
$${find}\:\int\:{ln}\left(\sqrt{{x}}\:+\sqrt{{x}+\mathrm{1}}\:+\sqrt{{x}+\mathrm{2}}\right){dx} \\ $$
Question Number 38896 Answers: 1 Comments: 2
$${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:\:\frac{{x}\left[{x}\right]}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$
Question Number 39030 Answers: 2 Comments: 3
$$\left.\mathrm{1}\right)\:{let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\mathrm{1}+{x}^{\mathrm{2}} {t}^{\mathrm{4}} }\:\:{with}\:{x}\:>\mathrm{0} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dt}}{\mathrm{1}+\mathrm{3}{t}^{\mathrm{4}} } \\ $$
Question Number 38804 Answers: 1 Comments: 3
$${let}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{x}} }{\mathrm{2}\left[{x}\right]\:+\mathrm{1}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$
Question Number 39029 Answers: 2 Comments: 0
$$\int\sqrt[{\mathrm{3}}]{\mathrm{3}−\mathrm{5}\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}}{dx}=? \\ $$$$\int\frac{\mathrm{1}}{\sqrt[{\mathrm{3}}]{\mathrm{3}−\mathrm{5}\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}}}{dx}=? \\ $$
Question Number 38746 Answers: 0 Comments: 3
$$\mathrm{this}\:\mathrm{is}\:\mathrm{still}\:\mathrm{waiting}\:\mathrm{to}\:\mathrm{be}\:\mathrm{solved}... \\ $$$$\int\frac{\sqrt{\left({t}−\mathrm{1}\right){t}\left({t}+\mathrm{1}\right)}}{\mathrm{3}{t}^{\mathrm{2}} −\mathrm{4}}{dt}=? \\ $$
Question Number 38728 Answers: 0 Comments: 1
$${find}\:{L}\:\left(\:\frac{{e}^{−\frac{{x}}{{a}}} }{{a}}\right)\:\:{with}\:{a}\neq\mathrm{0}\:\:{and}\:{L}\:{laplace}\:{transfom}. \\ $$
Question Number 38727 Answers: 0 Comments: 2
$${let}\:{n}\:{from}\:{N}\:\:{and}\:\:{A}_{{n}} =\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left({ax}\right)}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{{n}} }{dx}\:\:{and} \\ $$$${B}_{{n}} =\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{sin}\left({ax}\right)}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{{n}} }{dx} \\ $$$${find}\:{the}\:{value}\:{of}\:{A}_{{n}\:} \:\:{and}\:{B}_{{n}} \:\:. \\ $$$$ \\ $$
Question Number 38724 Answers: 0 Comments: 2
$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{2}} {cos}\left(\pi{x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 38718 Answers: 0 Comments: 3
$$\left.\mathrm{1}\right)\:{find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} \:{ln}\left(\mathrm{2}+{x}\:{cos}\theta\right){d}\theta \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\pi} \:{ln}\left(\mathrm{2}\:\:+{cos}\theta\right){d}\theta \\ $$$$ \\ $$
Question Number 38720 Answers: 0 Comments: 2
$${find}\:\:\:\int\:\:\:\:\:\frac{\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}−\mathrm{1}}}{\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}−\mathrm{1}}}{dx} \\ $$
Question Number 38719 Answers: 1 Comments: 0
$${find}\:\:\:\int\:\:{ln}\left(\sqrt{{x}}\:+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$
Question Number 38716 Answers: 1 Comments: 1
$${calculate}\:\:\:\int_{\mathrm{2}} ^{\mathrm{5}} \:\:\:\:\:\frac{{dx}}{\left({x}\:+\mathrm{1}−\left[{x}\right]\right)^{\mathrm{2}} } \\ $$
Question Number 38714 Answers: 1 Comments: 1
$${calculate}\:\:\:\int_{\mathrm{1}} ^{\mathrm{6}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{1}+{x}^{\mathrm{2}} \left[{x}\right]}{dx} \\ $$
Question Number 38706 Answers: 0 Comments: 4
$${let}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{d}\theta}{\mathrm{1}+{x}\:{e}^{{i}\theta} }\:\:\:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{developp}\:{f}\left({x}\right)\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{e}^{{i}\theta} }{\left(\mathrm{1}+{x}\:{e}^{{i}\theta} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{d}\theta}{\mathrm{2}\:+{e}^{{i}\theta} } \\ $$
Question Number 38651 Answers: 1 Comments: 0
$$\mathrm{If}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{−{x}^{\mathrm{2}} } {dx}\:=\:{a}\:,\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{2}} } {dx}\:{in}\:{terms}\:{of}\:'{a}'\:? \\ $$
Question Number 38536 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} \frac{{dx}}{\sqrt{\mathrm{3}−\mathrm{cos}\:{x}}}= \\ $$
Question Number 38516 Answers: 3 Comments: 1
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mid\mathrm{sin}\:{x}\:−\:\mathrm{cos}\:{x}\mid\mathrm{d}{x} \\ $$
Question Number 38470 Answers: 0 Comments: 4
$${calculate}\:{f}\left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({tx}\right)}{\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:{with}\:{t}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cosx}}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Pg 275 Pg 276 Pg 277 Pg 278 Pg 279 Pg 280 Pg 281 Pg 282 Pg 283 Pg 284
Terms of Service
Privacy Policy
Contact: info@tinkutara.com