Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 280

Question Number 40399    Answers: 3   Comments: 0

Solve : (2(√(xy)) −x)dy + ydx = 0.

$$\mathrm{Solve}\:: \\ $$$$\left(\mathrm{2}\sqrt{{xy}}\:−{x}\right){dy}\:+\:{ydx}\:=\:\mathrm{0}. \\ $$

Question Number 40397    Answers: 1   Comments: 0

Solve : (dy/dx) = ((sin y + x)/(sin 2y − xcos y)) .

$$\mathrm{Solve}\:: \\ $$$$\frac{\mathrm{dy}}{{dx}}\:=\:\frac{\mathrm{sin}\:{y}\:+\:{x}}{\mathrm{sin}\:\mathrm{2}{y}\:−\:{x}\mathrm{cos}\:{y}}\:. \\ $$

Question Number 40380    Answers: 2   Comments: 1

Solve : (dy/dx) = ((x+y)/(x−y))

$${S}\mathrm{olve}\::\:\:\:\:\:\frac{\mathrm{dy}}{\mathrm{d}{x}}\:=\:\frac{{x}+{y}}{{x}−{y}} \\ $$

Question Number 40467    Answers: 1   Comments: 2

∫ln ∣(√(x+1))+(√x)∣ dx=

$$\int\mathrm{ln}\:\mid\sqrt{{x}+\mathrm{1}}+\sqrt{{x}}\mid\:{dx}= \\ $$

Question Number 40322    Answers: 1   Comments: 4

Solve : (d^2 y/dx^2 ) = ((dy/dx))^2

$$\mathrm{Solve}\:: \\ $$$$\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{d}{x}^{\mathrm{2}} }\:=\:\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \\ $$

Question Number 40270    Answers: 1   Comments: 0

calculate the area of one “leaf” of r=sin nθ n∈N

$$\mathrm{calculate}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{one}\:``\mathrm{leaf}''\:\mathrm{of} \\ $$$${r}=\mathrm{sin}\:{n}\theta \\ $$$${n}\in\mathbb{N} \\ $$

Question Number 40251    Answers: 1   Comments: 0

1. ∫(dα/(sin 2α +tan 3α))=? 2. ∫(dβ/(cos 2β +cos 3β))=? 3. ∫(dγ/(sinh 2γ +tanh 3γ))=? 4. ∫(dδ/(cosh 2δ +cosh 3δ))=?

$$\mathrm{1}.\:\:\:\:\:\int\frac{{d}\alpha}{\mathrm{sin}\:\mathrm{2}\alpha\:+\mathrm{tan}\:\mathrm{3}\alpha}=? \\ $$$$\mathrm{2}.\:\:\:\:\:\int\frac{{d}\beta}{\mathrm{cos}\:\mathrm{2}\beta\:+\mathrm{cos}\:\mathrm{3}\beta}=? \\ $$$$\mathrm{3}.\:\:\:\:\:\int\frac{{d}\gamma}{\mathrm{sinh}\:\mathrm{2}\gamma\:+\mathrm{tanh}\:\mathrm{3}\gamma}=? \\ $$$$\mathrm{4}.\:\:\:\:\:\int\frac{{d}\delta}{\mathrm{cosh}\:\mathrm{2}\delta\:+\mathrm{cosh}\:\mathrm{3}\delta}=? \\ $$

Question Number 40161    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ ((sin((1/x^2 )))/(ln(1+(√x))))dx

$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{sin}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}{{ln}\left(\mathrm{1}+\sqrt{{x}}\right)}{dx} \\ $$

Question Number 40160    Answers: 0   Comments: 1

study the convergence of ∫_0 ^1 ((1−e^(−t) )/(t(√t))) dt

$${study}\:{the}\:{convergence}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}−{e}^{−{t}} }{{t}\sqrt{{t}}}\:{dt} \\ $$

Question Number 40159    Answers: 0   Comments: 1

let I_n = ∫_0 ^∞ (dx/((1+x^3 )^n )) find a relation etween I_n and I_(n+1) 2) calculate I_(1 ) and I_2

$${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{{n}} } \\ $$$${find}\:{a}\:{relation}\:{etween}\:{I}_{{n}} \:{and}\:{I}_{{n}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{\mathrm{1}\:} \:{and}\:{I}_{\mathrm{2}} \\ $$

Question Number 40158    Answers: 0   Comments: 3

let A_n = ∫_0 ^1 ((x^(2n+1) ln(x))/(x^2 −1))dx 1) justify the existence of A_n 2)calculate A_(n+1) −A_n 3) prove that x∈]0,1[ ⇒0<((xln(x))/(x^2 −1))<(1/2) 4) find lim_(n→+∞) A_n

$${let}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} \:{ln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{justify}\:{the}\:{existence}\:{of}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{A}_{{n}+\mathrm{1}} \:−{A}_{{n}} \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\Rightarrow\mathrm{0}<\frac{{xln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}<\frac{\mathrm{1}}{\mathrm{2}}\:\:\right. \\ $$$$\left.\mathrm{4}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {A}_{{n}} \\ $$

Question Number 40157    Answers: 1   Comments: 1

find the value of ∫_(−∞) ^(+∞) (dt/((t^2 −2t +2)^(3/2) ))

$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:−\mathrm{2}{t}\:+\mathrm{2}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$

Question Number 40156    Answers: 1   Comments: 1

find ∫_e^2 ^(+∞) (dt/(tln(t)ln(ln(t)))

$${find}\:\:\:\int_{{e}^{\mathrm{2}} } ^{+\infty} \:\:\:\:\frac{{dt}}{{tln}\left({t}\right){ln}\left({ln}\left({t}\right)\right.} \\ $$

Question Number 40155    Answers: 1   Comments: 1

caoculate ∫_0 ^∞ ((t dt)/((1+t^4 )^2 ))

$${caoculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}\:{dt}}{\left(\mathrm{1}+{t}^{\mathrm{4}} \right)^{\mathrm{2}} } \\ $$

Question Number 40154    Answers: 1   Comments: 1

find the value of ∫_0 ^1 ((ln(t))/((1+t)^2 ))dt

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$

Question Number 40153    Answers: 1   Comments: 1

calculate ∫_1 ^2 ((t−2)/(√(t^2 −1)))dt

$${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\frac{{t}−\mathrm{2}}{\sqrt{{t}^{\mathrm{2}} \:−\mathrm{1}}}{dt} \\ $$

Question Number 40152    Answers: 1   Comments: 1

let f(x) = ∫_(−1) ^x (e^t /(√(1−e^t )))dt with x<0 1) calculate f(x) 2) find ∫_(−1) ^0 (e^t /(√(1−e^t )))dt

$${let}\:\:{f}\left({x}\right)\:=\:\:\int_{−\mathrm{1}} ^{{x}} \:\:\:\:\frac{{e}^{{t}} }{\sqrt{\mathrm{1}−{e}^{{t}} }}{dt}\:\:\:{with}\:{x}<\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\int_{−\mathrm{1}} ^{\mathrm{0}} \:\:\frac{{e}^{{t}} }{\sqrt{\mathrm{1}−{e}^{{t}} }}{dt} \\ $$

Question Number 40151    Answers: 1   Comments: 1

let F(x) = ∫_0 ^(π/2) cos(xsint)dt 1) prove that ∀u ∈R 1−(u^2 /2) ≤cosu≤1−(u^2 /2) +(u^4 /(24)) 2) prove that (π/2)(1−(x^2 /4))≤F(x)≤ (π/2)(1−(x^2 /4) +(x^4 /(64)))

$${let}\:{F}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left({xsint}\right){dt} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\forall{u}\:\in{R}\:\:\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:\leqslant{cosu}\leqslant\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{{u}^{\mathrm{4}} }{\mathrm{24}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\right)\leqslant{F}\left({x}\right)\leqslant\:\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:+\frac{{x}^{\mathrm{4}} }{\mathrm{64}}\right) \\ $$

Question Number 40150    Answers: 0   Comments: 1

let f_n (x) =(1/((1+x^n )^(1+(1/n)) )) ddfined on [0,1] 1) prove that f_n →^(cs) f (n→+∞) 2) calculate I_n = ∫_0 ^1 f_n (x)dx

$${let}\:{f}_{{n}} \left({x}\right)\:=\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{{n}} \right)^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} }\:\:\:{ddfined}\:{on}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}_{{n}} \rightarrow^{{cs}} \:{f}\:\left({n}\rightarrow+\infty\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}_{{n}} \left({x}\right){dx} \\ $$$$ \\ $$

Question Number 40149    Answers: 0   Comments: 1

let u_n = (1/(√n)) Σ_(k=1) ^n (1/(√(n+4k))) find lim_(n→+∞) u_n

$${let}\:{u}_{{n}} =\:\frac{\mathrm{1}}{\sqrt{{n}}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\sqrt{{n}+\mathrm{4}{k}}} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \\ $$

Question Number 40148    Answers: 3   Comments: 0

let f(x)= (x^3 /((1+x^2 )^(3/2) )) 1) calculate ∫_0 ^1 f(x)dx 2) let S_n = (1/n^4 ) Σ_(k=1) ^n (k^3 /(√((1+((k/n))^2 )^3 ))) find lim_(n→+∞) S_n

$${let}\:\:{f}\left({x}\right)=\:\frac{{x}^{\mathrm{3}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}\left({x}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{let}\:\:{S}_{{n}} =\:\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\:\:\frac{{k}^{\mathrm{3}} }{\sqrt{\left(\mathrm{1}+\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} \right)^{\mathrm{3}} }} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:{S}_{{n}} \\ $$

Question Number 40147    Answers: 0   Comments: 2

calculate ∫_0 ^2 (√(x^3 (2−x)))dx

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\:\sqrt{{x}^{\mathrm{3}} \left(\mathrm{2}−{x}\right)}{dx} \\ $$

Question Number 40146    Answers: 1   Comments: 1

find ∫_(1/2) ^1 (dx/((√(4x^2 −1)) +(√(4x^2 +1))))

$${find}\:\:\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\sqrt{\mathrm{4}{x}^{\mathrm{2}} \:−\mathrm{1}}\:+\sqrt{\mathrm{4}{x}^{\mathrm{2}} \:+\mathrm{1}}} \\ $$

Question Number 40145    Answers: 1   Comments: 1

calculate ∫_(−7) ^(−3) (((x−1)dx)/(√(x^2 +2x−3)))

$${calculate}\:\int_{−\mathrm{7}} ^{−\mathrm{3}} \:\:\:\frac{\left({x}−\mathrm{1}\right){dx}}{\sqrt{{x}^{\mathrm{2}} \:+\mathrm{2}{x}−\mathrm{3}}} \\ $$

Question Number 40144    Answers: 1   Comments: 0

find ∫_1 ^2 x(√(x^2 −2x +5)) dx

$${find}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} {x}\sqrt{{x}^{\mathrm{2}} \:−\mathrm{2}{x}\:+\mathrm{5}}\:{dx} \\ $$

Question Number 40143    Answers: 0   Comments: 1

find the value of ∫_0 ^(π/4) ((tan(x)dx)/((√2)cos(x) +2sin^2 (x)))

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\frac{{tan}\left({x}\right){dx}}{\sqrt{\mathrm{2}}{cos}\left({x}\right)\:+\mathrm{2}{sin}^{\mathrm{2}} \left({x}\right)} \\ $$

  Pg 275      Pg 276      Pg 277      Pg 278      Pg 279      Pg 280      Pg 281      Pg 282      Pg 283      Pg 284   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com