let f(x) = ∫_(−∞) ^(+∞) ((cos(xt))/((t−i)^2 )) dt
1) let R =Re(f(x)) and I =Im(f(x)) extract R and I
2) calculate R and I
3) conclude the value of f(x)
4) calculate ∫_(−∞) ^(+∞) ((cos(2t))/((t−i)^2 ))dt
5) let u_n = ∫_(−∞) ^(+∞) ((cos((t/n)))/((t−i)^2 ))dt (n natral integer not o)
find lim_(n→+∞) u_n and study the convergence of Σu_n
let f(a) = ∫_0 ^(π/2) (dx/(1+asinx)) with a∈R
1) find a simple form of f(a)
2) calculate ∫_0 ^(π/2) (dx/(1+sinx)) and ∫_0 ^(π/2) (dx/(1+2sinx))
3) find the value of ∫_0 ^(π/2) ((cosx)/((1+asinx)^2 ))dx
4) find the value of ∫_0 ^(π/2) ((cosx)/((1+sinx)^2 ))dx and ∫_0 ^(π/2) ((cosx)/((1+2sinx)^2 ))dx