Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 269
Question Number 43676 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right){calculate}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{i}}\:\:{and}\:\:{J}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+{i}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}} \\ $$
Question Number 43675 Answers: 0 Comments: 1
$${calculate}\:\:\:\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} }\:. \\ $$
Question Number 43657 Answers: 3 Comments: 1
Question Number 43623 Answers: 1 Comments: 3
$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right)\:{find}\:\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$
Question Number 43551 Answers: 1 Comments: 0
$${evaluate}\:\int\frac{\mathrm{1}}{\mathrm{cos}\:\left({x}−{a}\right)\mathrm{cos}\:\left({x}−{b}\right)}{dx} \\ $$
Question Number 43550 Answers: 0 Comments: 1
$${prove}\:{that} \\ $$$$\int_{\:} \:\mathrm{4}_{\:\:\:\:\:} ^{\mathrm{4}^{\mathrm{4}^{{x}} } } .\mathrm{4}^{\mathrm{4}^{{x}} } .\mathrm{4}^{{x}} {dx}=\frac{\mathrm{4}^{\mathrm{4}^{{x}} } }{\left(\mathrm{log}\:\underset{{e}} {\mathrm{4}}\right)} \\ $$
Question Number 43539 Answers: 0 Comments: 1
$${calculate}\:\int\int_{\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:,\mathrm{0}\leqslant{y}\leqslant\mathrm{1}} \:\:\left({x}+\mathrm{2}{y}\right){e}^{\mathrm{2}{x}−{y}} {dxdy} \\ $$
Question Number 43538 Answers: 0 Comments: 1
$${calculate}\:\int\int_{\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\leqslant\mathrm{1}} \left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dxdy}\:{whit} \\ $$$${a}>\mathrm{0}\:{and}\:{b}>\mathrm{0}\:. \\ $$
Question Number 43517 Answers: 0 Comments: 1
Question Number 43589 Answers: 1 Comments: 3
Question Number 43490 Answers: 1 Comments: 2
$$\boldsymbol{\mathrm{evaluate}} \\ $$$$\int\sqrt{\boldsymbol{\mathrm{tan}\theta}\:\boldsymbol{\mathrm{d}}\theta} \\ $$
Question Number 43419 Answers: 0 Comments: 2
Question Number 43418 Answers: 1 Comments: 0
Question Number 43417 Answers: 1 Comments: 2
Question Number 43398 Answers: 0 Comments: 0
Question Number 43386 Answers: 4 Comments: 4
Question Number 43365 Answers: 0 Comments: 0
Question Number 43354 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{particle}\:\mathrm{starts}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{with}\:\mathrm{acceleration}\left(\mathrm{30}+\mathrm{6t}\right) \\ $$$$\mathrm{ms}^{−\mathrm{2}} \:\mathrm{at}\:\mathrm{time}\:\mathrm{t}.\:\mathrm{Where}\:\mathrm{will}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{come}\:\mathrm{to}\:\mathrm{rest} \\ $$$$\mathrm{again}? \\ $$
Question Number 43342 Answers: 1 Comments: 0
$$\mathrm{using}\:\mathrm{the}\:\mathrm{substitution}\:\mathrm{u}=\mathrm{x}+\mathrm{2},\:\mathrm{evaluate}\:\int_{\mathrm{1}} ^{\mathrm{2}} \frac{\mathrm{x}−\mathrm{1}}{\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{4}} } \\ $$
Question Number 43337 Answers: 0 Comments: 3
$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{{x}} \:\:\frac{{t}}{\mathrm{1}+{sint}}{dt} \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}}{\mathrm{1}+{sint}}\:{dt}\: \\ $$
Question Number 43324 Answers: 1 Comments: 0
Question Number 43322 Answers: 1 Comments: 1
Question Number 43319 Answers: 1 Comments: 0
Question Number 43191 Answers: 1 Comments: 3
$${integrate}\:{by}\:{use}\:{a}\:{partial}\:{friction} \\ $$$$\int\frac{{lnx}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} } \\ $$
Question Number 43190 Answers: 1 Comments: 1
$${a}\:{point}\:{move}\:{in}\:{such}\:{away}\:{that}\:{its}\: \\ $$$${its}\:{distance}\:{from}\:{the}\:{x}−{axis}\:{is}\:{alwa} \\ $$$${yas}\frac{\mathrm{1}}{\mathrm{5}}\:{its}\:{distance}\:{from}\:{origin}. \\ $$$${find}\:{the}\:{equetion}\:{of}\:{its}\:{path}. \\ $$
Question Number 43159 Answers: 1 Comments: 0
Pg 264 Pg 265 Pg 266 Pg 267 Pg 268 Pg 269 Pg 270 Pg 271 Pg 272 Pg 273
Terms of Service
Privacy Policy
Contact: info@tinkutara.com