Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 268

Question Number 44695    Answers: 0   Comments: 2

∫(e^(√(t−1)) /t)dt = ?

$$\int\frac{\boldsymbol{\mathrm{e}}^{\sqrt{\boldsymbol{\mathrm{t}}−\mathrm{1}}} }{\boldsymbol{\mathrm{t}}}\boldsymbol{\mathrm{dt}}\:=\:? \\ $$

Question Number 44639    Answers: 0   Comments: 1

∫(1/(1+(log x)^2 ))dx=?

$$\int\frac{\mathrm{1}}{\mathrm{1}+\left(\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=? \\ $$$$ \\ $$

Question Number 44654    Answers: 1   Comments: 4

∫(e^x /(1+x^2 ))dx=?

$$\int\frac{\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} }{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 44604    Answers: 1   Comments: 1

∫[((log x − 1)/(1+(log x)^2 ))]^2 dx = (x/((log x)^2 +1))+C

$$\int\left[\frac{\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\:\:−\:\:\mathrm{1}}{\mathrm{1}+\left(\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} }\right]^{\mathrm{2}} \boldsymbol{\mathrm{dx}}\:\:=\:\:\frac{\boldsymbol{\mathrm{x}}}{\left(\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} +\mathrm{1}}+\boldsymbol{\mathrm{C}} \\ $$

Question Number 44602    Answers: 0   Comments: 0

∫(e^x /(1+x^2 )) dx = ?

$$\int\frac{\boldsymbol{{e}}^{\boldsymbol{\mathrm{x}}} }{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\:\boldsymbol{\mathrm{dx}}\:=\:\:? \\ $$

Question Number 44587    Answers: 1   Comments: 2

calculate ∫_0 ^∞ (dt/(1+t^(2018) ))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2018}} } \\ $$

Question Number 44674    Answers: 0   Comments: 1

solving some integrals we might meet some of the following functions which cannot be solved with elementar knowledge but tables should exist somewhere in the depth of the www... these links might be interesting exponential integral ∫(e^(−x) /x)dx en.wikipedia.org/wiki/Exponential_integral logarithmic integral ∫(dx/(ln x)) en.wikipedia.org/wiki/Logarithmic_integral_function also see en.wikipedia.org/wiki/Polylogarithm trigonometric integrals i.e. ∫((sin x)/x)dx en.wikipedia.org/wiki/Trigonometric_integral

$$\mathrm{solving}\:\mathrm{some}\:\mathrm{integrals}\:\mathrm{we}\:\mathrm{might}\:\mathrm{meet}\:\mathrm{some} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{functions}\:\mathrm{which}\:\mathrm{cannot}\:\mathrm{be} \\ $$$$\mathrm{solved}\:\mathrm{with}\:\mathrm{elementar}\:\mathrm{knowledge}\:\mathrm{but}\:\mathrm{tables} \\ $$$$\mathrm{should}\:\mathrm{exist}\:\mathrm{somewhere}\:\mathrm{in}\:\mathrm{the}\:\mathrm{depth}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{www}... \\ $$$$\mathrm{these}\:\mathrm{links}\:\mathrm{might}\:\mathrm{be}\:\mathrm{interesting} \\ $$$$ \\ $$$$\mathrm{exponential}\:\mathrm{integral} \\ $$$$\int\frac{\mathrm{e}^{−{x}} }{{x}}{dx} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Exponential\_integral} \\ $$$$ \\ $$$$\mathrm{logarithmic}\:\mathrm{integral} \\ $$$$\int\frac{{dx}}{\mathrm{ln}\:{x}} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Logarithmic\_integral\_function} \\ $$$$\mathrm{also}\:\mathrm{see} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Polylogarithm} \\ $$$$ \\ $$$$\mathrm{trigonometric}\:\mathrm{integrals} \\ $$$$\mathrm{i}.\mathrm{e}.\:\int\frac{\mathrm{sin}\:{x}}{{x}}{dx} \\ $$$$\mathrm{en}.\mathrm{wikipedia}.\mathrm{org}/\mathrm{wiki}/\mathrm{Trigonometric\_integral} \\ $$

Question Number 44573    Answers: 1   Comments: 1

Question Number 44575    Answers: 1   Comments: 3

Question Number 44515    Answers: 1   Comments: 0

let g(x) =∫_0 ^∞ ((t ln(t)dt)/((1+xt)^3 )) with x>0 1) give a explicit form of g(x) 2) calculate ∫_0 ^∞ ((t ln(t))/((1+t)^3 ))dt 3) calculate ∫_0 ^∞ ((tln(t))/((1+2t)^3 )) dt 4) calculate A(θ) =∫_0 ^∞ ((t ln(t))/((1+t sinθ)^3 ))dt with 0<θ<(π/2)

$${let}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right){dt}}{\left(\mathrm{1}+{xt}\right)^{\mathrm{3}} }\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{give}\:{a}\:{explicit}\:{form}\:{of}\:{g}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{3}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{tln}\left({t}\right)}{\left(\mathrm{1}+\mathrm{2}{t}\right)^{\mathrm{3}} }\:{dt} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\:{sin}\theta\right)^{\mathrm{3}} }{dt}\:\:{with}\:\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$

Question Number 44512    Answers: 1   Comments: 1

prove that:−∫2^(ln x) dx = ((x.2^(ln x) )/(ln(xe))) +C

$$\boldsymbol{{prove}}\:\boldsymbol{{that}}:−\int\mathrm{2}^{\boldsymbol{\mathrm{ln}}\:\boldsymbol{\mathrm{x}}} \:\boldsymbol{\mathrm{dx}}\:=\:\frac{\boldsymbol{\mathrm{x}}.\mathrm{2}^{\boldsymbol{\mathrm{ln}}\:\boldsymbol{\mathrm{x}}} }{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{xe}}\right)}\:+\boldsymbol{\mathrm{C}} \\ $$$$ \\ $$

Question Number 44509    Answers: 1   Comments: 1

∫(√(tan x)) dx=?

$$\int\sqrt{\boldsymbol{\mathrm{tan}}\:\boldsymbol{\mathrm{x}}}\:\:\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 44508    Answers: 1   Comments: 1

∫(√(sin x ))dx=?

$$\int\sqrt{\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{x}}\:}\boldsymbol{\mathrm{dx}}=? \\ $$

Question Number 44498    Answers: 0   Comments: 2

Question Number 44476    Answers: 0   Comments: 6

let f(x) =∫_0 ^∞ (dt/(t^2 +2xt−1)) 1)find a explicit form of f(x) 2) cslvulste ∫_0 ^∞ (dt/(t^2 +t−1)) 3)calculate A(θ)=∫_0 ^∞ (dt/(t^2 +2tan(θ)t −1)) 4) calculate g(x)=∫_0 ^∞ ((tdt)/((t^2 +2xt−1)^2 )) 5)find the value of ∫_0 ^∞ ((tdt)/((t^2 +4t−1)^2 ))

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}{xt}−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{cslvulste}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+{t}−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right){calculate}\:{A}\left(\theta\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}{tan}\left(\theta\right){t}\:−\mathrm{1}} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} \:+\mathrm{2}{xt}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{5}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} \:+\mathrm{4}{t}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 44475    Answers: 0   Comments: 0

find a and b if ∫_0 ^∞ ((√t) +a(√(t+1))+b(√(t+2)))dt converges and give its value in this case.

$${find}\:{a}\:{and}\:{b}\:\:{if}\:\int_{\mathrm{0}} ^{\infty} \:\left(\sqrt{{t}}\:+{a}\sqrt{{t}+\mathrm{1}}+{b}\sqrt{{t}+\mathrm{2}}\right){dt} \\ $$$${converges}\:{and}\:{give}\:{its}\:{value}\:{in}\:{this}\:{case}. \\ $$

Question Number 44473    Answers: 0   Comments: 1

let A_n =∫_0 ^∞ sin(n[t])e^(−t) dt 2)calculate A_n and lim_(n→+∞) n A_n 3)study the convergence of Σ_n A_n

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{sin}\left({n}\left[{t}\right]\right){e}^{−{t}} {dt} \\ $$$$\left.\mathrm{2}\right){calculate}\:{A}_{{n}} \:\:{and}\:{lim}_{{n}\rightarrow+\infty} {n}\:{A}_{{n}} \\ $$$$\left.\mathrm{3}\right){study}\:{the}\:{convergence}\:{of}\:\sum_{{n}} \:{A}_{{n}} \\ $$

Question Number 44472    Answers: 0   Comments: 1

find f(x)=∫_0 ^∞ ((ln(t)dt)/((1+xt)^2 )) withx>0

$${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({t}\right){dt}}{\left(\mathrm{1}+{xt}\right)^{\mathrm{2}} }\:{withx}>\mathrm{0} \\ $$

Question Number 44471    Answers: 0   Comments: 2

calculste ∫_0 ^∞ ((ln(x))/((1+x)^2 ))dx

$${calculste}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 44470    Answers: 0   Comments: 0

find ∫_0 ^∞ (dt/(1+t^2 sin^2 t))

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} {sin}^{\mathrm{2}} {t}} \\ $$

Question Number 44466    Answers: 0   Comments: 4

let f(x) = ∫_0 ^∞ ((x sinx)/(a^2 +x^4 ))dx with a>0 1) find a explicit form of f(a) 2) find g(a) = ∫_0 ^∞ ((xsinx)/((a^2 +x^4 )^2 ))dx 3)find the value of ∫_0 ^∞ ((x sinx)/(x^4 +1))dx 4) find the value of ∫_0 ^∞ ((xsinx)/((x^4 +1)^2 ))dx .

$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}\:{sinx}}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{g}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{xsinx}}{\left({a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} \right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{sinx}}{{x}^{\mathrm{4}} \:+\mathrm{1}}{dx} \\ $$$$\left.\mathrm{4}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{xsinx}}{\left({x}^{\mathrm{4}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:. \\ $$$$ \\ $$

Question Number 44441    Answers: 1   Comments: 0

Question Number 44424    Answers: 1   Comments: 0

by considering a sermicircle from −r to r prove that area of circle is πr^2

$${by}\:{considering}\:\:{a}\:{sermicircle}\:{from}\:−{r}\:{to}\:\:{r}\:{prove}\:{that}\:{area}\:{of}\:{circle}\:{is}\:\pi{r}^{\mathrm{2}} \\ $$

Question Number 44423    Answers: 1   Comments: 0

evaluate ∫3^x dx

$${evaluate}\:\int\mathrm{3}^{{x}} {dx} \\ $$

Question Number 44422    Answers: 0   Comments: 3

use substitution x=cos^2 θ+3sin^2 θ show that∫_1 ^3 (dx/(√((x−1)(3−x))))=π

$${use}\:{substitution}\:{x}=\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{3}{sin}^{\mathrm{2}} \theta \\ $$$${show}\:{that}\int_{\mathrm{1}} ^{\mathrm{3}} \frac{{dx}}{\sqrt{\left({x}−\mathrm{1}\right)\left(\mathrm{3}−{x}\right)}}=\pi \\ $$

Question Number 44319    Answers: 1   Comments: 2

find lim_(x→0^+ ) ∫_x ^(2x) ((√(1+t^2 ))/t)dt .

$${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\int_{{x}} ^{\mathrm{2}{x}} \:\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}}{dt}\:. \\ $$

  Pg 263      Pg 264      Pg 265      Pg 266      Pg 267      Pg 268      Pg 269      Pg 270      Pg 271      Pg 272   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com