Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 267
Question Number 41518 Answers: 3 Comments: 0
$${calculate}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt}\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$
Question Number 41516 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{4}} }\:{dx} \\ $$
Question Number 41515 Answers: 1 Comments: 3
$$\left.{l}\left.{et}\:\:{f}_{{n}} \left({x}\right)\:=\frac{{sin}\left(\mathrm{2}\left({n}+\mathrm{1}\right){x}\right)}{{sinx}}\:{if}\:\:{x}\in\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\:{and}\:{f}_{{n}} \left(\mathrm{0}\right)=\mathrm{2}\left({n}+\mathrm{1}\right)\:\:{let} \\ $$$${u}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{f}_{{n}} \left({x}\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\forall{n}\:{fromN}\:\:{u}_{{n}+\mathrm{1}} −{u}_{{n}} =\mathrm{2}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{3}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \\ $$
Question Number 41514 Answers: 1 Comments: 0
$${find}\:\:\:\int\:\:{cos}\left({lnx}\right){dx}\: \\ $$
Question Number 41487 Answers: 3 Comments: 4
Question Number 41461 Answers: 1 Comments: 3
$$\mathrm{Find}\:\mathrm{area}\:\mathrm{of}\:\mathrm{square}\:\mathrm{inserted}\:\mathrm{in}\:\mathrm{curve} \\ $$$$\mathrm{f}\left({x}\right)=\:\mathrm{3}{x}−{x}^{\mathrm{3}} . \\ $$
Question Number 41436 Answers: 4 Comments: 0
Question Number 41378 Answers: 1 Comments: 1
$$\mathrm{Solve}\:: \\ $$$$\mathrm{e}^{{x}} \left({x}+\mathrm{1}\right){dx}\:+\:\left(\mathrm{ye}^{\mathrm{y}} \:−\:{xe}^{{x}} \right)\mathrm{dy}=\mathrm{0} \\ $$
Question Number 41346 Answers: 0 Comments: 6
$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:{cos}\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){dxdy}\:. \\ $$
Question Number 41343 Answers: 1 Comments: 1
$${calculate}\:\:\:\:\int\int_{{D}} \:\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dxdy}\:\:{with} \\ $$$${D}\:=\:\left[−\mathrm{1},\mathrm{1}\right]^{\mathrm{2}} \\ $$
Question Number 41326 Answers: 0 Comments: 0
$${Evaluate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {x}^{\mathrm{3}} {sec}^{\mathrm{5}} {x}\:{dx} \\ $$
Question Number 41302 Answers: 1 Comments: 1
$${calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}} \\ $$
Question Number 41301 Answers: 1 Comments: 4
$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{ax}} {ln}\left(\mathrm{1}+{e}^{−{bx}} \right){dx}\:{with}\:{a}>\mathrm{0}\:{and} \\ $$$${b}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{\partial{f}}{\partial{a}}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\frac{\partial{f}}{\partial{b}}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{e}^{−{x}} \right){dx}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{x}} \right){dx}\:. \\ $$
Question Number 41280 Answers: 1 Comments: 1
$${find}\:\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{arctan}\left({xt}^{\mathrm{2}} \right){dt} \\ $$
Question Number 41279 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:. \\ $$$${find}\:\:{a}\:{explicite}\:{form}\:{of}\:{f}^{'} \left({x}\right) \\ $$
Question Number 41273 Answers: 0 Comments: 2
$${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{+\infty} \:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:\:{with}\:{x}\:{fromR}\:. \\ $$
Question Number 41248 Answers: 2 Comments: 4
Question Number 41246 Answers: 2 Comments: 1
Question Number 41135 Answers: 1 Comments: 0
$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({xt}\right){dt}\:\:{x}\:{from}\:{R}\: \\ $$
Question Number 41084 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{6}} \:+\:\mathrm{1}}\:\mathrm{dx} \\ $$
Question Number 41078 Answers: 1 Comments: 3
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{sin}\:{x}\:+\:\mathrm{2cos}\:{x}}{\mathrm{3sin}\:{x}\:+\:\mathrm{4cos}\:{x}}{dx} \\ $$
Question Number 41054 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{x}^{\mathrm{2}} }{{sin}^{\mathrm{2}} {x}}{dx}\:. \\ $$
Question Number 41053 Answers: 4 Comments: 1
$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{6}} {x}\:{dx}\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{6}} {xdx} \\ $$$$\left.\mathrm{1}\right){cslculate}\:{I}\:+{J}\:\:{and}\:{I}−{J} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:{I}\:{and}\:{J} \\ $$
Question Number 41052 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{x}}{\mathrm{1}+{cos}^{\mathrm{2}} {x}}{dxr} \\ $$
Question Number 41049 Answers: 0 Comments: 2
$${calculate}\:\:\:\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{x}^{\mathrm{2}} }{{cos}^{\mathrm{2}} {x}}{dx} \\ $$
Question Number 47182 Answers: 0 Comments: 3
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{x}} \sqrt{\mathrm{1}−\sqrt{{x}}}{dx}\: \\ $$
Pg 262 Pg 263 Pg 264 Pg 265 Pg 266 Pg 267 Pg 268 Pg 269 Pg 270 Pg 271
Terms of Service
Privacy Policy
Contact: info@tinkutara.com