Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 267

Question Number 44306    Answers: 0   Comments: 2

find ∫ (dt/((t+1)(√t) +t(√(t+1)))) 2) calculate ∫_1 ^3 (dt/((t+1)(√t)+t(√(t+1))))

$${find}\:\int\:\:\frac{{dt}}{\left({t}+\mathrm{1}\right)\sqrt{{t}}\:+{t}\sqrt{{t}+\mathrm{1}}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\frac{{dt}}{\left({t}+\mathrm{1}\right)\sqrt{{t}}+{t}\sqrt{{t}+\mathrm{1}}} \\ $$

Question Number 44305    Answers: 0   Comments: 1

let f(a) =∫_0 ^∞ ln(1+(a^2 /x^2 ))dx 1) find a explicit form of f(x) 2)find ∫_0 ^∞ ln(1+(1/x^2 ))dx 3)calculate ∫_0 ^∞ ln(1+(2/x^2 ))dx

$${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{ln}\left(\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:\int_{\mathrm{0}} ^{\infty} \:{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){dx} \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:{ln}\left(\mathrm{1}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} }\right){dx} \\ $$

Question Number 44304    Answers: 1   Comments: 2

find f(a)=∫_0 ^(π/4) (dx/(1+acos^2 x)) a from R.

$${find}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dx}}{\mathrm{1}+{acos}^{\mathrm{2}} {x}} \\ $$$${a}\:{from}\:{R}. \\ $$

Question Number 44302    Answers: 2   Comments: 1

calculate ∫_0 ^∞ (dx/((x+1)(x+2)(x+3)))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)} \\ $$

Question Number 44317    Answers: 1   Comments: 0

let u_n =∫_0 ^∞ ((t−[t])/(t(t+n)))dt find a equivalent of u_n when n→+∞

$${let}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}−\left[{t}\right]}{{t}\left({t}+{n}\right)}{dt} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \:{when}\:{n}\rightarrow+\infty \\ $$

Question Number 44264    Answers: 1   Comments: 1

∫(1/((x^2 +2x+5)^2 ))dx

$$\int\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{5}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 44250    Answers: 1   Comments: 0

Evaliate ∫sin^4 x dx please show working.

$$\mathrm{Evaliate}\:\int\mathrm{sin}^{\mathrm{4}} \mathrm{x}\:\mathrm{dx} \\ $$$$\mathrm{please}\:\mathrm{show}\:\mathrm{working}. \\ $$

Question Number 44232    Answers: 1   Comments: 0

∫_0 ^π e^(sin^2 x) Cos^3 xdx

$$\int_{\mathrm{0}} ^{\pi} \mathrm{e}^{\mathrm{sin}^{\mathrm{2}} \mathrm{x}} \mathrm{Cos}^{\mathrm{3}} \mathrm{xdx} \\ $$

Question Number 44202    Answers: 1   Comments: 4

find f(a) =∫_0 ^∞ (dx/(x^3 +a^3 )) with a>0 2)find g(a)=∫_0 ^∞ (dx/((x^3 +a^3 )^2 )) 3)find the value of ∫_0 ^∞ (dx/((1+x^3 )^2 )) 4)find the value of ∫_0 ^∞ (dx/(8x^3 +1))

$${find}\:\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{3}} \:+{a}^{\mathrm{3}} }\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){find}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{3}} \:+{a}^{\mathrm{3}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{8}{x}^{\mathrm{3}} \:+\mathrm{1}} \\ $$

Question Number 44201    Answers: 1   Comments: 4

let f(x)=∫_0 ^1 ((ln(1+xt^2 ))/t^2 )dt with x ∈R 1) find a explicit form of f(x) 2)calculate ∫_0 ^1 ((ln(1+t^2 ))/t^2 )dt 3)calculate ∫_0 ^1 ((ln(1+2t^2 ))/t^2 )dt 4) calculate ∫_0 ^1 ((ln(1−t^2 ))/t^2 )dt

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt}\:\:{with}\:{x}\:\in{R} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+\mathrm{2}{t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt} \\ $$

Question Number 44179    Answers: 1   Comments: 1

1) find ∫ (dx/((√(x^2 +x+1))+(√(x^2 −x+1)))) 2)calculate ∫_0 ^1 (dx/((√(x^2 +x+1))+(√(x^2 −x +1))))

$$\left.\mathrm{1}\right)\:{find}\:\int\:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}} \\ $$$$\left.\mathrm{2}\right){calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −{x}\:+\mathrm{1}}} \\ $$

Question Number 44178    Answers: 0   Comments: 0

find f(x)=∫_0 ^π ((sin^2 t)/((x^2 −2x cost +1)^2 ))dt 2)find the value of ∫_0 ^π ((sin^2 t)/((x^2 −cost +1)^2 ))dt

$${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}^{\mathrm{2}} {t}}{\left({x}^{\mathrm{2}} −\mathrm{2}{x}\:{cost}\:+\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}^{\mathrm{2}} {t}}{\left({x}^{\mathrm{2}} −{cost}\:+\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$

Question Number 44176    Answers: 0   Comments: 1

find A_n =∫_0 ^∞ (t^n −[t])e^(−nt) dt and lim_(n→+∞) A_n n integr natural.

$${find}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \left({t}^{{n}} −\left[{t}\right]\right){e}^{−{nt}} {dt} \\ $$$${and}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$$${n}\:{integr}\:{natural}. \\ $$

Question Number 44175    Answers: 0   Comments: 2

find f(a) =∫_1 ^(+∞) (dx/(ch^2 x +a sh^2 x)) 2) find the value of ∫_1 ^(+∞) (dx/(ch^2 x+2sh^2 x))

$${find}\:\:{f}\left({a}\right)\:=\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dx}}{{ch}^{\mathrm{2}} {x}\:+{a}\:{sh}^{\mathrm{2}} {x}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dx}}{{ch}^{\mathrm{2}} {x}+\mathrm{2}{sh}^{\mathrm{2}} {x}} \\ $$

Question Number 44174    Answers: 0   Comments: 0

find ∫_(−∞) ^(+∞) (dx/((1+x^2 )(1+x e^(iθ) )))

$${find}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}\:{e}^{{i}\theta} \right)} \\ $$

Question Number 44173    Answers: 1   Comments: 1

calculate ∫_0 ^∞ (dt/((3+t^2 )(√(1+t))))dt

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left(\mathrm{3}+{t}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+{t}}}{dt} \\ $$

Question Number 44148    Answers: 1   Comments: 0

∫dx/sinx∙sin(x+α)=?

$$\int{dx}/{sinx}\centerdot{sin}\left({x}+\alpha\right)=? \\ $$

Question Number 44092    Answers: 0   Comments: 1

Question Number 44063    Answers: 0   Comments: 0

Question Number 44002    Answers: 0   Comments: 1

calculate I = ∫_0 ^(π/4) ((arctanx)/(1+x)) and J = ∫_0 ^(π/4) ((arctanx)/(1−x))dx

$${calculate}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{arctanx}}{\mathrm{1}+{x}}\:\:\:{and}\:{J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{arctanx}}{\mathrm{1}−{x}}{dx} \\ $$

Question Number 44001    Answers: 0   Comments: 0

calculate A = ∫_0 ^1 (x/(arctanx))dx . ∫_0 ^1 ((arctanx)/x)dx

$${calculate}\:{A}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{{arctanx}}{dx}\:.\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctanx}}{{x}}{dx} \\ $$

Question Number 43999    Answers: 0   Comments: 1

find the value of ∫_0 ^(π/2) (x/(√(1−cosx)))dx.

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{x}}{\sqrt{\mathrm{1}−{cosx}}}{dx}. \\ $$

Question Number 43991    Answers: 2   Comments: 0

∫ (1/(x^(1/2) + x^(1/3) )) dx

$$\int\:\frac{\mathrm{1}}{\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \:+\:\:\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\:\:\mathrm{dx} \\ $$

Question Number 43987    Answers: 0   Comments: 2

Question Number 43981    Answers: 0   Comments: 4

∫(√(sin x)) dx

$$\int\sqrt{\mathrm{sin}\:{x}}\:{dx} \\ $$

Question Number 43969    Answers: 0   Comments: 0

  Pg 262      Pg 263      Pg 264      Pg 265      Pg 266      Pg 267      Pg 268      Pg 269      Pg 270      Pg 271   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com