Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 263

Question Number 41627    Answers: 1   Comments: 2

Question Number 41586    Answers: 2   Comments: 1

f(x)=(√(−3+(√((x+1)/(x−1))))) ∫f(x)=? ∫f^(−1) (x)=?

$${f}\left({x}\right)=\sqrt{−\mathrm{3}+\sqrt{\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}}} \\ $$$$\int{f}\left({x}\right)=? \\ $$$$\int{f}^{−\mathrm{1}} \left({x}\right)=? \\ $$

Question Number 41561    Answers: 2   Comments: 3

∫ (dx/(3sin(x) + 4cos(x)))

$$\int\:\frac{\mathrm{dx}}{\mathrm{3sin}\left(\mathrm{x}\right)\:+\:\mathrm{4cos}\left(\mathrm{x}\right)} \\ $$

Question Number 41555    Answers: 5   Comments: 0

Question Number 41518    Answers: 3   Comments: 0

calculate A_n = ∫_0 ^1 (1−t^2 )^n dt with n integr natural

$${calculate}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt}\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$

Question Number 41516    Answers: 1   Comments: 1

calculate ∫_0 ^1 ((ln(1+x))/((1+x)^4 )) dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{4}} }\:{dx} \\ $$

Question Number 41515    Answers: 1   Comments: 3

let f_n (x) =((sin(2(n+1)x))/(sinx)) if x∈]0,(π/2)] and f_n (0)=2(n+1) let u_n = ∫_0 ^(π/2) f_n (x)dx 1) prove that ∀n fromN u_(n+1) −u_n =2(((−1)^(n+1) )/(2n+3)) 2)find lim_(n→+∞) u_n

$$\left.{l}\left.{et}\:\:{f}_{{n}} \left({x}\right)\:=\frac{{sin}\left(\mathrm{2}\left({n}+\mathrm{1}\right){x}\right)}{{sinx}}\:{if}\:\:{x}\in\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\:{and}\:{f}_{{n}} \left(\mathrm{0}\right)=\mathrm{2}\left({n}+\mathrm{1}\right)\:\:{let} \\ $$$${u}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{f}_{{n}} \left({x}\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\forall{n}\:{fromN}\:\:{u}_{{n}+\mathrm{1}} −{u}_{{n}} =\mathrm{2}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{3}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \\ $$

Question Number 41514    Answers: 1   Comments: 0

find ∫ cos(lnx)dx

$${find}\:\:\:\int\:\:{cos}\left({lnx}\right){dx}\: \\ $$

Question Number 41487    Answers: 3   Comments: 4

Question Number 41461    Answers: 1   Comments: 3

Find area of square inserted in curve f(x)= 3x−x^3 .

$$\mathrm{Find}\:\mathrm{area}\:\mathrm{of}\:\mathrm{square}\:\mathrm{inserted}\:\mathrm{in}\:\mathrm{curve} \\ $$$$\mathrm{f}\left({x}\right)=\:\mathrm{3}{x}−{x}^{\mathrm{3}} . \\ $$

Question Number 41436    Answers: 4   Comments: 0

Question Number 41378    Answers: 1   Comments: 1

Solve : e^x (x+1)dx + (ye^y − xe^x )dy=0

$$\mathrm{Solve}\:: \\ $$$$\mathrm{e}^{{x}} \left({x}+\mathrm{1}\right){dx}\:+\:\left(\mathrm{ye}^{\mathrm{y}} \:−\:{xe}^{{x}} \right)\mathrm{dy}=\mathrm{0} \\ $$

Question Number 41346    Answers: 0   Comments: 6

calculate ∫∫_([0,1]^2 ) cos(x^2 +y^2 )dxdy .

$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:{cos}\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){dxdy}\:. \\ $$

Question Number 41343    Answers: 1   Comments: 1

calculate ∫∫_D (x^2 −y^2 )dxdy with D = [−1,1]^2

$${calculate}\:\:\:\:\int\int_{{D}} \:\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dxdy}\:\:{with} \\ $$$${D}\:=\:\left[−\mathrm{1},\mathrm{1}\right]^{\mathrm{2}} \\ $$

Question Number 41326    Answers: 0   Comments: 0

Evaluate ∫_0 ^(π/2) x^3 sec^5 x dx

$${Evaluate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {x}^{\mathrm{3}} {sec}^{\mathrm{5}} {x}\:{dx} \\ $$

Question Number 41302    Answers: 1   Comments: 1

calculate ∫_1 ^(+∞) (dx/(x^2 (√(x^2 +x+1))))

$${calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}} \\ $$

Question Number 41301    Answers: 1   Comments: 4

let f(x)=∫_0 ^∞ e^(−ax) ln(1+e^(−bx) )dx with a>0 and b>0 1) calculate (∂f/∂a)(x) 2) calculate (∂f/∂b)(x) 3)find the value of ∫_0 ^∞ e^(−2x) ln(1+e^(−x) )dx and ∫_0 ^∞ e^(−x) ln(1+e^(−2x) )dx .

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{ax}} {ln}\left(\mathrm{1}+{e}^{−{bx}} \right){dx}\:{with}\:{a}>\mathrm{0}\:{and} \\ $$$${b}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{\partial{f}}{\partial{a}}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\frac{\partial{f}}{\partial{b}}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{e}^{−{x}} \right){dx}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{x}} \right){dx}\:. \\ $$

Question Number 41280    Answers: 1   Comments: 1

find f(x) = ∫_0 ^1 arctan(xt^2 )dt

$${find}\:\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{arctan}\left({xt}^{\mathrm{2}} \right){dt} \\ $$

Question Number 41279    Answers: 0   Comments: 1

let f(x)=∫_0 ^∞ arctan(xt^2 )dt . find a explicite form of f^′ (x)

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:. \\ $$$${find}\:\:{a}\:{explicite}\:{form}\:{of}\:{f}^{'} \left({x}\right) \\ $$

Question Number 41273    Answers: 0   Comments: 2

find f(x)=∫_0 ^(+∞) arctan(xt^2 )dt with x fromR .

$${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{+\infty} \:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:\:{with}\:{x}\:{fromR}\:. \\ $$

Question Number 41248    Answers: 2   Comments: 4

Question Number 41246    Answers: 2   Comments: 1

Question Number 41135    Answers: 1   Comments: 0

find f(x)=∫_0 ^1 arctan(xt)dt x from R

$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({xt}\right){dt}\:\:{x}\:{from}\:{R}\: \\ $$

Question Number 41084    Answers: 1   Comments: 0

∫ (x^3 /(x^6 + 1)) dx

$$\int\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{6}} \:+\:\mathrm{1}}\:\mathrm{dx} \\ $$

Question Number 41078    Answers: 1   Comments: 3

∫_0 ^1 ((sin x + 2cos x)/(3sin x + 4cos x))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{sin}\:{x}\:+\:\mathrm{2cos}\:{x}}{\mathrm{3sin}\:{x}\:+\:\mathrm{4cos}\:{x}}{dx} \\ $$

Question Number 41054    Answers: 0   Comments: 1

calculate ∫_0 ^(π/2) (x^2 /(sin^2 x))dx .

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{x}^{\mathrm{2}} }{{sin}^{\mathrm{2}} {x}}{dx}\:. \\ $$

  Pg 258      Pg 259      Pg 260      Pg 261      Pg 262      Pg 263      Pg 264      Pg 265      Pg 266      Pg 267   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com