Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 26
Question Number 182270 Answers: 0 Comments: 0
Question Number 182242 Answers: 1 Comments: 0
$$\underset{\mathrm{0}} {\int}^{\mathrm{2}} \underset{\mathrm{0}} {\int}^{\mathrm{3}} \underset{\mathrm{0}} {\int}^{\mathrm{4}} {e}^{{x}+{y}+{z}} \:{dx}\:{dy}\:{dz}=? \\ $$
Question Number 182238 Answers: 1 Comments: 0
Question Number 182170 Answers: 1 Comments: 0
Question Number 181872 Answers: 1 Comments: 0
$$\underset{−\mathrm{1}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{1}}{\mid{x}\mid}\:{dx} \\ $$
Question Number 181857 Answers: 1 Comments: 0
Question Number 181840 Answers: 0 Comments: 3
$$\underset{−\mathrm{1}} {\overset{\mathrm{4}} {\int}}{ln}\:{x}\:{dx} \\ $$
Question Number 181793 Answers: 0 Comments: 1
$$\mathrm{Please}\:\mathrm{Calculate}\:\mathrm{this}\:\mathrm{problem} \\ $$$$\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{dx}\:\underset{\mathrm{x}^{\mathrm{2}} } {\overset{\sqrt{\mathrm{x}}} {\int}}\:\mathrm{dy}=.... \\ $$
Question Number 181792 Answers: 0 Comments: 1
$$\mathrm{Please}\:\mathrm{Calculate}\:\mathrm{this}\:\mathrm{integration} \\ $$$$\mathrm{2}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{dx}\:\underset{\mathrm{2x}} {\overset{\left(\mathrm{2x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} } {\int}}\:\mathrm{dy} \\ $$
Question Number 181643 Answers: 0 Comments: 2
$$\Omega=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{tan}^{−\mathrm{1}} \:\mathrm{cos}\:{x}\:{dx} \\ $$$$\left(\mathrm{I}'\mathrm{d}\:\mathrm{need}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{if}\:\mathrm{possible}.\:\mathrm{I}'\mathrm{ve}\right. \\ $$$$\left.\mathrm{got}\:\mathrm{no}\:\mathrm{idea}\:\mathrm{if}\:\mathrm{and}\:\mathrm{how}\:\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}.\right) \\ $$
Question Number 181607 Answers: 0 Comments: 0
Question Number 181319 Answers: 1 Comments: 0
$${Determiner} \\ $$$$\mathrm{1}.\:\:\:\int\frac{{x}}{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$$\mathrm{2}.\:\:\:\int\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$
Question Number 181152 Answers: 0 Comments: 0
$$\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{integral}} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\boldsymbol{{ln}}\left(\mathrm{1}+\boldsymbol{{x}}\right)\boldsymbol{{ln}}\left(\mathrm{1}−\boldsymbol{{x}}\right)}{\mathrm{1}+\boldsymbol{{x}}}\boldsymbol{{dx}}=??? \\ $$
Question Number 180786 Answers: 1 Comments: 0
$${f}\left({t}\right)=\int_{\mathrm{0}} ^{{t}} {x}−\lfloor{x}\rfloor\:\:{dx} \\ $$
Question Number 180780 Answers: 0 Comments: 1
Question Number 180680 Answers: 4 Comments: 0
Question Number 180471 Answers: 0 Comments: 1
Question Number 180405 Answers: 0 Comments: 0
$$\:\:\:\Omega\:=\:\int\:\frac{\mathrm{ln}\:\left(\mathrm{x}+\mathrm{1}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}}\:\mathrm{dx}\:=? \\ $$
Question Number 180398 Answers: 1 Comments: 1
$$\int\frac{\mathrm{1}}{\mathrm{sin}\:\left(\mathrm{x}−\mathrm{a}\right)\mathrm{sin}\:\left(\mathrm{x}−\mathrm{b}\right)}\mathrm{dx}=? \\ $$$$ \\ $$
Question Number 180388 Answers: 1 Comments: 0
Question Number 180379 Answers: 1 Comments: 0
$$\:\:\:\:\int\:{x}^{\mathrm{2}} \:\sqrt[{\mathrm{6}}]{{x}^{\mathrm{6}} +\mathrm{5}}\:{dx}\:=? \\ $$
Question Number 180095 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{5}} \int_{\mathrm{0}} ^{\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }} \sqrt{\mathrm{36}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} {dx}\:{dy}} \\ $$
Question Number 180046 Answers: 0 Comments: 0
$${pls}\:{find}\: \\ $$$$\underset{−\infty} {\overset{\infty} {\int}}\frac{{cos}\:{x}}{\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}{dx} \\ $$
Question Number 179862 Answers: 2 Comments: 2
Question Number 179853 Answers: 1 Comments: 2
$$\int\frac{\boldsymbol{{xdx}}}{\left(\boldsymbol{{x}}−\mathrm{1}\right)\left(\boldsymbol{{x}}−\mathrm{2}\right)} \\ $$
Question Number 179852 Answers: 0 Comments: 4
$$\boldsymbol{{prove}}\:\:\:\:\:\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \boldsymbol{{log}}\left(\boldsymbol{{sinx}}\right)\boldsymbol{{dx}}=\frac{\pi}{\mathrm{2}}\boldsymbol{{log}}\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Pg 21 Pg 22 Pg 23 Pg 24 Pg 25 Pg 26 Pg 27 Pg 28 Pg 29 Pg 30
Terms of Service
Privacy Policy
Contact: info@tinkutara.com