Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 257
Question Number 52484 Answers: 2 Comments: 0
$$\int\:\:\frac{\mathrm{cos}\:\mathrm{x}\:−\:\mathrm{x}\:\mathrm{sin}\:\mathrm{x}}{\mathrm{x}\:\mathrm{cos}\:\mathrm{x}}\:\:\mathrm{dx} \\ $$
Question Number 52482 Answers: 0 Comments: 2
$${find}\:{the}\:{value}\:{or}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}\:. \\ $$
Question Number 52459 Answers: 0 Comments: 2
$${let}\:{f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{i}\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right){determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left(\alpha\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{ix}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+\mathrm{2}{ix}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}. \\ $$
Question Number 52418 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx} \\ $$
Question Number 52363 Answers: 2 Comments: 0
$${integrate}\:\frac{\mathrm{sin}^{\mathrm{2}} {x}\mathrm{cos}^{\mathrm{2}} {x}\:}{{sin}^{\mathrm{3}} {x}+{cos}^{\mathrm{3}} {x}}{dx} \\ $$
Question Number 52356 Answers: 1 Comments: 8
Question Number 52233 Answers: 3 Comments: 0
$${please}\:{can}\:{you}\:{help}\:{me}\:{with}\:{this}\: \\ $$$${caculus}:\:\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}\:{dx} \\ $$
Question Number 52197 Answers: 1 Comments: 0
$${calculate}\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\frac{{cosx}\:−{sinx}}{\mathrm{2}\:+{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$$$ \\ $$
Question Number 52164 Answers: 2 Comments: 4
$${find}: \\ $$$$\underset{\mathrm{0}} {\overset{\Pi} {\int}}\left({cos}^{\mathrm{6}} \theta\:−\mathrm{cos}\:^{\mathrm{4}} \theta\right)\:{d}\theta \\ $$$${plase}\:{help}\:{me}\:{in}\:{cinding}\:{this}\:{And}\:{also} \\ $$$${explain}\:{if}\:{possible} \\ $$
Question Number 52089 Answers: 0 Comments: 0
Question Number 51998 Answers: 0 Comments: 1
$${let}\:{U}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{1}\leqslant{x}^{\mathrm{2}} \:+\mathrm{2}{y}^{\mathrm{2}} \leqslant\mathrm{3}\right\} \\ $$$${calculate}\:\int\int_{{U}} \:\:\:\:\frac{{x}−{y}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{dxdxy} \\ $$
Question Number 51997 Answers: 1 Comments: 2
$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{xsint}}\:\:{with}\:{x}>−\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({o}\right)\:,{f}\left(\mathrm{1}\right)\:{and}\:{f}\left(\mathrm{2}\right) \\ $$$$\left.\mathrm{2}\right)\:{give}\:{f}\:{at}\:{form}\:{of}\:{function}\: \\ $$$$ \\ $$
Question Number 51995 Answers: 1 Comments: 0
$${let}\:\:{f}\:{defined}\:{on}\:\left[\mathrm{0},\mathrm{1}\right]\:{by}\:\:{f}\left(\mathrm{0}\right)=\mathrm{0}\:{and}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}\left[\frac{\mathrm{1}}{\mathrm{2}{x}}\right]+\mathrm{1}} \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx} \\ $$
Question Number 51994 Answers: 0 Comments: 1
$${let}\:{D}_{{n}} =\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:\:/\left({x},{y}\right)\in\left[\frac{\mathrm{1}}{{n}}\:,{n}\left[\:\right\}\right.\right. \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\int\int_{{D}_{{n}} } \:\:\:\:\:{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } {dxdy} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}\:. \\ $$
Question Number 51993 Answers: 0 Comments: 0
$${find}\:{A}_{{n}} \left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {cos}\left({tx}\right){dt} \\ $$
Question Number 51992 Answers: 0 Comments: 0
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\int_{{x}} ^{\mathrm{2}{x}} \:\:\:\:\frac{{t}}{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt} \\ $$
Question Number 51991 Answers: 0 Comments: 1
$${find}\:{f}\left({a}\right)\:=\int\:\:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{ax}^{\mathrm{2}} }+\sqrt{\mathrm{1}−{ax}^{\mathrm{2}} }}\:\:{with}\:{a}>\mathrm{0} \\ $$
Question Number 51990 Answers: 1 Comments: 0
$${calculate}\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:{x}\:{arctan}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx} \\ $$
Question Number 51989 Answers: 1 Comments: 0
$${calculate}\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\frac{{sinx}}{\mathrm{1}+{sin}^{\mathrm{2}} {x}}{dx} \\ $$
Question Number 51988 Answers: 0 Comments: 0
$${let}\:{f}\left({a}\right)\:=\int\:\:\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{4}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int\:\:\:\:\frac{{dx}}{\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{4}} }} \\ $$$${a}>\mathrm{0} \\ $$
Question Number 51987 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{dx} \\ $$
Question Number 51959 Answers: 0 Comments: 4
Question Number 51910 Answers: 0 Comments: 4
Question Number 51876 Answers: 1 Comments: 2
Question Number 51841 Answers: 0 Comments: 2
Question Number 51834 Answers: 0 Comments: 1
$${calculatef}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+{at}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\:\:{with}\:{a}>\mathrm{0}. \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{3}+{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}. \\ $$
Pg 252 Pg 253 Pg 254 Pg 255 Pg 256 Pg 257 Pg 258 Pg 259 Pg 260 Pg 261
Terms of Service
Privacy Policy
Contact: info@tinkutara.com