Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 25

Question Number 202212    Answers: 1   Comments: 1

Question Number 202167    Answers: 2   Comments: 0

∫^1 _0 ∫^1 _x sin(y^2 )dydx = ¿

$$\underset{\mathrm{0}} {\int}^{\mathrm{1}} \underset{{x}} {\int}^{\mathrm{1}} {sin}\left({y}^{\mathrm{2}} \right){dydx}\:=\:¿ \\ $$

Question Number 202127    Answers: 1   Comments: 0

Question Number 202125    Answers: 1   Comments: 0

∫ ((sin(3x))/(1+sin^3 x))dx

$$\int\:\frac{\boldsymbol{{sin}}\left(\mathrm{3}\boldsymbol{{x}}\right)}{\mathrm{1}+\boldsymbol{{sin}}^{\mathrm{3}} \boldsymbol{{x}}}\boldsymbol{{dx}} \\ $$

Question Number 201925    Answers: 0   Comments: 2

Question Number 201982    Answers: 0   Comments: 0

Question Number 201980    Answers: 1   Comments: 0

Question Number 201817    Answers: 1   Comments: 0

Question Number 201762    Answers: 1   Comments: 0

Question Number 201727    Answers: 1   Comments: 0

∫_(π/6) ^(π/3) e^(sin x^(cos x^(tan x^(cot x^(sec x^(cosec x) ) ) ) ) ) dx

$$\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} {e}^{\mathrm{sin}\:{x}^{{c}\mathrm{os}\:{x}^{\mathrm{tan}\:{x}^{\mathrm{cot}\:{x}^{\mathrm{sec}\:{x}^{\mathrm{cosec}\:{x}} } } } } } {dx} \\ $$

Question Number 201646    Answers: 1   Comments: 0

Question Number 201644    Answers: 0   Comments: 0

Question Number 201553    Answers: 3   Comments: 0

Question Number 201548    Answers: 1   Comments: 0

Question Number 201546    Answers: 2   Comments: 4

∫Sin(Inx)dx

$$\:\:\:\int\boldsymbol{{Sin}}\left(\boldsymbol{{Inx}}\right)\boldsymbol{{dx}} \\ $$

Question Number 201510    Answers: 1   Comments: 0

Question Number 201509    Answers: 1   Comments: 0

Question Number 201452    Answers: 2   Comments: 0

Question Number 201445    Answers: 0   Comments: 0

Question Number 201347    Answers: 1   Comments: 0

Question Number 201341    Answers: 2   Comments: 0

if a>0 and m≥0 ∫_0 ^∞ ((cos(mx))/((x^2 +a^2 )^2 ))dx=?

$${if}\:{a}>\mathrm{0}\:\:{and}\:\:{m}\geqslant\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{cos}\left({mx}\right)}{\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}=? \\ $$

Question Number 201456    Answers: 1   Comments: 0

Question Number 201281    Answers: 0   Comments: 0

Question Number 201267    Answers: 0   Comments: 1

find ∫_0 ^1 (dx/((1+x)^(3/2) +(x−1)^(3/2) ))

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} +\left({x}−\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$

Question Number 201266    Answers: 2   Comments: 0

calculate ∫_1 ^∞ (dx/( (√(1+x^3 ))))

$${calculate}\:\int_{\mathrm{1}} ^{\infty} \frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }} \\ $$

Question Number 201241    Answers: 0   Comments: 0

  Pg 20      Pg 21      Pg 22      Pg 23      Pg 24      Pg 25      Pg 26      Pg 27      Pg 28      Pg 29   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com