Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 25
Question Number 201267 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} +\left({x}−\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$
Question Number 201266 Answers: 2 Comments: 0
$${calculate}\:\int_{\mathrm{1}} ^{\infty} \frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }} \\ $$
Question Number 201241 Answers: 0 Comments: 0
Question Number 201229 Answers: 1 Comments: 2
$$\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\boldsymbol{{Inx}}}}\boldsymbol{{dx}} \\ $$
Question Number 201228 Answers: 0 Comments: 0
$$\int\sqrt{\boldsymbol{{x}}+\sqrt{\boldsymbol{{x}}+\sqrt{\boldsymbol{{x}}}}}\:\boldsymbol{{dx}} \\ $$
Question Number 201227 Answers: 1 Comments: 0
$$\:\int\:\frac{\left(\boldsymbol{{x}}^{\mathrm{4}} +\boldsymbol{{x}}^{\mathrm{7}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} }{\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}} \\ $$
Question Number 201224 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\boldsymbol{{sinx}}}}\boldsymbol{{dx}} \\ $$
Question Number 201223 Answers: 1 Comments: 0
$$\int\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\boldsymbol{{x}}}}\:\boldsymbol{{dx}} \\ $$
Question Number 201222 Answers: 1 Comments: 0
$$\:\int\:\left(\boldsymbol{{x}}^{\mathrm{6}} +\boldsymbol{{x}}^{\mathrm{9}} \right)^{\frac{\mathrm{1}}{\mathrm{6}}} \boldsymbol{{dx}} \\ $$
Question Number 201172 Answers: 1 Comments: 0
Question Number 201110 Answers: 1 Comments: 0
$$\int\frac{\mathrm{1}}{\:\sqrt{\left({x}−{a}\right)^{\mathrm{3}} }+\sqrt{\left({x}+{a}\right)^{\mathrm{3}} }}{dx} \\ $$
Question Number 201184 Answers: 1 Comments: 0
Question Number 201044 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \left({x}−{y}\:\right)^{\mathrm{2}} {sin}^{\:\mathrm{2}} \:\left(\:{x}+{y}\:\right){dxdy}=? \\ $$
Question Number 201016 Answers: 0 Comments: 0
Question Number 201011 Answers: 0 Comments: 0
$$\boldsymbol{{Prove}}\:\boldsymbol{{that}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}\boldsymbol{{arctan}}\left(\frac{\boldsymbol{{t}}}{\boldsymbol{{x}}}\right)}{\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{\pi{t}}} −\mathrm{1}}\boldsymbol{{dt}}=\boldsymbol{{In}\Gamma}\left(\boldsymbol{{x}}\right)−\boldsymbol{{xIn}}\left(\boldsymbol{{x}}\right)+\boldsymbol{{x}}−\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{In}}\left(\frac{\mathrm{2}\boldsymbol{\pi}}{\boldsymbol{{x}}}\right) \\ $$$$\boldsymbol{{Michael}}\:\boldsymbol{{faraday}} \\ $$
Question Number 200933 Answers: 0 Comments: 0
$$ \\ $$$$\int\mathrm{coth}\:\left(\mathrm{ln}\:\left[\sqrt{\mathrm{tanh}\:\left(\mathrm{ln}\:\left(\sqrt{\mathrm{sec}^{−\mathrm{1}} \:\:\sqrt[{\mathrm{4}}]{{x}}\:\:}\right)\right)}\:\right]\right) \\ $$$$ \\ $$$$ \\ $$
Question Number 200923 Answers: 0 Comments: 0
Question Number 203714 Answers: 1 Comments: 0
$$\int\mathrm{2}{x}^{\mathrm{2}} \\ $$
Question Number 200915 Answers: 1 Comments: 0
Question Number 200901 Answers: 0 Comments: 0
Question Number 200930 Answers: 0 Comments: 1
$${If}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{4}} \right)^{{n}} {dx}\:\:{and}\:\:\frac{{I}_{{n}} }{{I}_{{n}−\mathrm{1}} }=\frac{\lambda{n}}{\lambda{n}+\mathrm{1}} \\ $$$${then}\:{find}\:\:\lambda \\ $$
Question Number 200844 Answers: 2 Comments: 2
Question Number 200802 Answers: 1 Comments: 0
Question Number 200801 Answers: 1 Comments: 0
Question Number 200748 Answers: 2 Comments: 0
Question Number 200747 Answers: 2 Comments: 0
Pg 20 Pg 21 Pg 22 Pg 23 Pg 24 Pg 25 Pg 26 Pg 27 Pg 28 Pg 29
Terms of Service
Privacy Policy
Contact: info@tinkutara.com