we want to find the vslue of
I =∫_0 ^1 ((ln(1+x))/(1+x^2 )) dx let
A=∫∫_W (x/((1+x^2 )(1+xy)))dxdy
with W=[0,1]^2
calculate A by two method and
conclude the value of I .
let f(α)=∫_0 ^1 ((arctan(αx))/(1+αx^2 )) dx with α real
1) find f(α) interms of α
2) find the values of ∫_0 ^1 ((arctan(2x))/(1+2x^2 )) dx and ∫_0 ^1 ((arctan(4x))/(1+4x^2 ))dx
let f(x) =∫_0 ^∞ ((cos(xcosθ))/(x^2 +θ^2 )) dθ and g(x) =∫_0 ^∞ ((sin(xcosθ))/(x^2 +θ^2 )) dθ
1) find a explicit form of f(x) and g(x)
2) find the value of ∫_0 ^∞ ((cos(2cosθ))/(4+θ^2 )) dθ and ∫_0 ^∞ ((sin(2cosθ))/(4+θ^2 )) dθ
3) let u_n =f(n^2 ) study the serie Σ u_n