let f(x) =∫_0 ^(π/2) ln(cosθ +xsinθ)dθ with x fromR
1) determine a explicit form for f(x)
2) calculate ∫_0 ^(π/2) ln(cosθ +sinθ) dθ and ∫_0 ^(π/2) ln(cosθ +2sinθ)dθ .
let f(x) =∫_(π/3) ^(π/2) (dθ/(1+xtanθ)) with x real
1) find a explicit form for f(x)
2) determine also g(x) =∫_(π/3) ^(π/2) ((tanθ)/((1+xtanθ)^2 )) dθ
3) let U_n (x) =f^((n)) (x) give U_n (x) at form of integral.
4) calculate ∫_(π/3) ^(π/2) (dθ/(1+2tanθ)) and ∫_(π/3) ^(π/2) ((tanθ dθ)/((1+2tanθ)^2 ))
let f(x) =∫ (dt/(x +cost +cos(2t))) (x real)
1) find a explicit form of f(x)
2)determine also ∫ (dt/((x+cost +cos(2t))^2 ))
3) find ∫ (dt/(1+cos(t)+cos(2t))) and
∫ (dt/((3 +cos(t)+cos(2t))^2 ))
let f(x) =∫_(π/4) ^(π/3) (dt/(2+xsint))
1) find a explicit form of f(x)
2)determine also g(x)=∫_(π/4) ^(π/3) ((sint)/((2+xsint)^2 ))dt
3) find the value of ∫_(π/4) ^(π/3) (dt/(2+3sint))
and ∫_(π/4) ^(π/3) ((sint)/((2+3sint)^2 ))dt
a .∫ (dx/(2sin^2 x+3tg^2 x))=?
b .∫(( 1+(x)^(1/3) )/(1+(√x)+(x)^(1/3) +(x)^(1/6) ))dx=?
c .∫ ((cosx)/(1+cos2x))dx=?
d .∫ ((sin^2 x)/((√2)+(√3).cos^2 x))dx=?