let f(x) =∫_1 ^3 arctan(x+(x/t))dt withx>0
1) determine a explicit form of f(x)
2) give f^′ (x) at form of integral and find its value
3) calculate ∫_1 ^3 arctan(1+(1/t))dt and ∫_1 ^3 arctan(2+(2/t))dt .
4) calculate ∫_1 ^3 (2t−1)arctan(1+(1/t))dt .
let f(x) =∫_0 ^∞ ((cos(πxt))/((t^2 +3x^2 )^2 )) dt with x>0
1) find a explicit form for f(x)
2) find the value of ∫_0 ^∞ ((cos(πt))/((t^2 +3)^2 ))dt
3) let U_n =f(n) find nature of Σ U_n
let f(x) =∫_0 ^(+∞) (dt/((t^2 +x^2 )^3 )) with x>0
1) find a explicit form off (x)
1) calculate ∫_0 ^∞ (dx/((t^2 +3)^3 )) and ∫_0 ^∞ (dt/((t^2 +4)^3 ))
2) find the value of A(θ) =∫_0 ^∞ (dt/((t^2 +sin^2 θ)^3 )) with 0<θ<π.
let f(a) =∫_(π/4) ^(π/3) (√(a+tan^2 x))dx with a>0
1) find a explicit form of f(a)
2) find also g(a) =∫_(π/4) ^(π/3) (dx/(√(a+tan^2 x)))
3) find the values of ∫_(π/4) ^(π/3) (√(2+tan^2 x))dx and ∫_(π/4) ^(π/3) (dx/(√(3+tan^2 x)))