Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 244

Question Number 56935    Answers: 0   Comments: 1

1. calculate U_n =∫_0 ^∞ (x^3 −2x+1)e^(−n[x]) dx with n integr natural and n≥1 2. find nature of Σ U_n

$$\mathrm{1}.\:{calculate}\:\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\left({x}^{\mathrm{3}} −\mathrm{2}{x}+\mathrm{1}\right){e}^{−{n}\left[{x}\right]} {dx}\:\:{with}\:{n}\:{integr}\:{natural}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\mathrm{2}.\:{find}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$

Question Number 56931    Answers: 1   Comments: 1

calculate ∫_(−∞) ^(+∞) ((x^2 −1)/((x^2 −x+3)^2 ))dx

$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 56829    Answers: 1   Comments: 0

let f(t) =∫_0 ^∞ ((cos(t(1+x^2 )))/(1+x^2 )) dx with t≥0 find a explicit form of f(t)

$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({t}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:{with}\:{t}\geqslant\mathrm{0} \\ $$$${find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right)\: \\ $$

Question Number 56827    Answers: 1   Comments: 1

find the value of ∫_(−∞) ^(+∞) (dx/(x^4 −x^2 +3))

$${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} +\mathrm{3}} \\ $$

Question Number 56747    Answers: 1   Comments: 0

∫ x^(2 ) e^x^2 dx

$$\int\:\mathrm{x}^{\mathrm{2}\:} \mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \:\:\mathrm{dx} \\ $$

Question Number 56700    Answers: 1   Comments: 2

find ∫ (√(x−2(√x)+3))dx

$$\:{find}\:\int\:\sqrt{{x}−\mathrm{2}\sqrt{{x}}+\mathrm{3}}{dx} \\ $$

Question Number 56699    Answers: 0   Comments: 2

let f_n (a)=∫_(−∞) ^∞ ((sin(x^n ))/(x^2 +a^2 )) dx with a positif real not 0 and n from N 1) find a explicit form of f(a) 2) calculate g_n (a) =∫_(−∞) ^(+∞) ((sin(x^n ))/((x^2 +a^2 )^2 ))dx 3) calculate ∫_(−∞) ^(+∞) ((sin(x^3 ))/(x^2 +4)) dx and ∫_(−∞) ^(+∞) ((sin(x^2 ))/(x^2 +9))dx 4) calculate ∫_(−∞) ^(+∞) ((sin(x^3 ))/((x^2 +4)^2 ))dx .

$${let}\:{f}_{{n}} \left({a}\right)=\int_{−\infty} ^{\infty} \:\:\frac{{sin}\left({x}^{{n}} \right)}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }\:{dx}\:\:\:{with}\:{a}\:{positif}\:{real}\:{not}\:\mathrm{0}\:\:{and}\:{n}\:{from}\:{N} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{calculate}\:{g}_{{n}} \left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{sin}\left({x}^{{n}} \right)}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{sin}\left({x}^{\mathrm{3}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}\:{dx}\:{and}\:\int_{−\infty} ^{+\infty} \:\:\frac{{sin}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{sin}\left({x}^{\mathrm{3}} \right)}{\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)^{\mathrm{2}} }{dx}\:. \\ $$

Question Number 56698    Answers: 0   Comments: 2

find the value of ∫_0 ^∞ ((sin(x^2 ))/(x^4 +4))dx

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{4}} \:+\mathrm{4}}{dx} \\ $$

Question Number 56629    Answers: 0   Comments: 2

1) calculate I =∫_(−∞) ^(+∞) (dx/(x^2 −i)) and J =∫_(−∞) ^(+∞) (dx/(x^2 −i)) 2) find the value of ∫_(−∞) ^(+∞) (dx/(x^4 +1))

$$\left.\mathrm{1}\right)\:{calculate}\:{I}\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} −{i}}\:\:\:{and}\:{J}\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} −{i}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}} \\ $$

Question Number 56523    Answers: 0   Comments: 2

∫x(√(3x^3 +2)) dx=?

$$\int{x}\sqrt{\mathrm{3}{x}^{\mathrm{3}} +\mathrm{2}}\:{dx}=? \\ $$

Question Number 56383    Answers: 2   Comments: 4

Question Number 56329    Answers: 0   Comments: 1

1)calculate A_n =∫_(1/n) ^1 ((ln(1+x^2 ))/(1+x^2 ))dx with n integr and n≥1 2) find lim_(n→+∞) A_n 3) study the convergence of Σ A_n

$$\left.\mathrm{1}\right){calculate}\:{A}_{{n}} =\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\:{A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:\:{study}\:{the}\:{convergence}\:{of}\:\Sigma\:{A}_{{n}} \\ $$

Question Number 56345    Answers: 0   Comments: 1

let f(a) =∫_0 ^∞ (dx/(x^n +a^n )) with n integr ≥2 and a>0 1) calculate f(a) intems of a 2) let g(a) =∫_0 ^∞ (dx/((x^n +a^n )^2 )) calculate g(a) interms of a 3) find the values of integrals ∫_0 ^∞ (dx/(x^8 +16)) and ∫_0 ^∞ (dx/((x^8 +16)^2 ))

$${let}\:\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{{x}^{{n}} \:+{a}^{{n}} }\:\:\:{with}\:{n}\:{integr}\:\geqslant\mathrm{2}\:\:{and}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({a}\right)\:{intems}\:{of}\:{a} \\ $$$$\left.\mathrm{2}\right)\:{let}\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{{n}} \:+{a}^{{n}} \right)^{\mathrm{2}} }\:\:{calculate}\:{g}\left({a}\right)\:{interms}\:{of}\:{a} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{values}\:{of}\:{integrals}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{8}} +\mathrm{16}}\:\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{8}} \:+\mathrm{16}\right)^{\mathrm{2}} } \\ $$

Question Number 56311    Answers: 0   Comments: 1

let f(x) =∫_0 ^∞ ((cos(xt))/(x^2 +t^2 )) dt with x>0 1) find f(x) 2) find the values of ∫_0 ^∞ ((cos(t))/(1+t^2 ))dt and ∫_0 ^∞ ((cos(2t))/(4+t^2 ))dt 3) let U_n =∫_0 ^∞ ((cos(nt))/(n^2 +t^2 ))dt find lim_(n→+∞) U_n and study the convergenge of Σ U_n and Σ U_n ^2

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({xt}\right)}{{x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }\:{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}{t}\right)}{\mathrm{4}+{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({nt}\right)}{{n}^{\mathrm{2}} +{t}^{\mathrm{2}} }{dt}\:\:\:{find}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} \:\:\:\:{and}\:{study}\:{the}\:{convergenge}\:{of} \\ $$$$\Sigma\:{U}_{{n}} \:\:\:{and}\:\Sigma\:{U}_{{n}} ^{\mathrm{2}} \\ $$$$ \\ $$

Question Number 56310    Answers: 0   Comments: 2

let f(x)=∫_(−∞) ^(+∞) cos(t^2 +xt +3)dt with x>0 1) find f(x) 2) calculate ∫_1 ^4 f(x)dx and ∫_1 ^(+∞) f(x)dx

$${let}\:{f}\left({x}\right)=\int_{−\infty} ^{+\infty} \:\:{cos}\left({t}^{\mathrm{2}} \:+{xt}\:+\mathrm{3}\right){dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{1}} ^{\mathrm{4}} {f}\left({x}\right){dx}\:{and}\:\int_{\mathrm{1}} ^{+\infty} {f}\left({x}\right){dx} \\ $$

Question Number 56280    Answers: 2   Comments: 2

Evaluate : 1) ((∫_0 ^( 1_ ) (1−(1−x^2 )^(100) )^(201) .xdx)/(∫_0 ^( 1) (1−(1−x^2 )^(100) )^(202) .xdx)) = ? 2) ((∫_0 ^( 1) (1−x^(200) )^(201) dx)/(∫_0 ^( 1) (1−x^(200) )^(202) dx)) = ?

$${Evaluate}\:: \\ $$$$\left.\mathrm{1}\right)\:\frac{\int_{\mathrm{0}} ^{\:\mathrm{1}_{} } \left(\mathrm{1}−\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{100}} \right)^{\mathrm{201}} \:.{xdx}}{\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathrm{1}−\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{100}} \right)^{\mathrm{202}} .{xdx}}\:=\:? \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\frac{\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{200}} \right)^{\mathrm{201}} {dx}}{\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{200}} \right)^{\mathrm{202}} {dx}}\:=\:? \\ $$

Question Number 56189    Answers: 0   Comments: 2

let u_n =∫_(−∞) ^∞ ((sin(nx^2 ))/(x^2 +x +n)) dx 1) calculate u_n 2) find lim_(n→+∞) u_n 3) study the serie Σ u_n

$${let}\:{u}_{{n}} =\int_{−\infty} ^{\infty} \:\:\:\frac{{sin}\left({nx}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} +{x}\:+{n}}\:{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:{u}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{serie}\:\Sigma\:{u}_{{n}} \\ $$

Question Number 56188    Answers: 1   Comments: 0

find the value of ∫_0 ^∞ (((1+x)^(−(1/4)) −(1+x)^(−(3/4)) )/x) dx

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}+{x}\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} −\left(\mathrm{1}+{x}\right)^{−\frac{\mathrm{3}}{\mathrm{4}}} }{{x}}\:{dx} \\ $$

Question Number 56187    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ (((1+x)^α −(1+x)^β )/x) dx .

$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\mathrm{1}+{x}\right)^{\alpha} −\left(\mathrm{1}+{x}\right)^{\beta} }{{x}}\:{dx}\:\:. \\ $$

Question Number 56186    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(ix))/(2+x^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({ix}\right)}{\mathrm{2}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 56169    Answers: 1   Comments: 0

∫^1 _(−∞) (a+bi)^x dx=?

$$\underset{−\infty} {\int}^{\mathrm{1}} \left({a}+{b}\mathrm{i}\right)^{{x}} {dx}=? \\ $$

Question Number 56107    Answers: 2   Comments: 1

∫_(−1) ^0 ∣x sin (πx)∣ dx

$$\int_{−\mathrm{1}} ^{\mathrm{0}} \:\mid{x}\:\mathrm{sin}\:\left(\pi{x}\right)\mid\:{dx} \\ $$

Question Number 56061    Answers: 1   Comments: 0

∫_0 ^1 e^(−x^2 ) dx correct to 3 decimal place.

$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{x}^{\mathrm{2}} } {dx}\:{correct}\:{to}\:\mathrm{3}\:{decimal}\:{place}. \\ $$

Question Number 56060    Answers: 0   Comments: 3

∫e^(−x^2 ) dx as an infinite series.Hence investigate its converge.

$$\int{e}^{−{x}^{\mathrm{2}} } {dx}\:{as}\:{an}\:{infinite}\:{series}.{Hence} \\ $$$${investigate}\:{its}\:{converge}. \\ $$

Question Number 55999    Answers: 0   Comments: 1

Question Number 55998    Answers: 1   Comments: 1

find f(x) =∫_0 ^1 arctan(t^2 +xt +1)dt .

$${find}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({t}^{\mathrm{2}} +{xt}\:+\mathrm{1}\right){dt}\:\:. \\ $$

  Pg 239      Pg 240      Pg 241      Pg 242      Pg 243      Pg 244      Pg 245      Pg 246      Pg 247      Pg 248   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com