let f_n (a)=∫_(−∞) ^∞ ((sin(x^n ))/(x^2 +a^2 )) dx with a positif real not 0 and n from N
1) find a explicit form of f(a)
2) calculate g_n (a) =∫_(−∞) ^(+∞) ((sin(x^n ))/((x^2 +a^2 )^2 ))dx
3) calculate ∫_(−∞) ^(+∞) ((sin(x^3 ))/(x^2 +4)) dx and ∫_(−∞) ^(+∞) ((sin(x^2 ))/(x^2 +9))dx
4) calculate ∫_(−∞) ^(+∞) ((sin(x^3 ))/((x^2 +4)^2 ))dx .
let f(a) =∫_0 ^∞ (dx/(x^n +a^n )) with n integr ≥2 and a>0
1) calculate f(a) intems of a
2) let g(a) =∫_0 ^∞ (dx/((x^n +a^n )^2 )) calculate g(a) interms of a
3) find the values of integrals ∫_0 ^∞ (dx/(x^8 +16)) and ∫_0 ^∞ (dx/((x^8 +16)^2 ))
let f(x) =∫_0 ^∞ ((cos(xt))/(x^2 +t^2 )) dt with x>0
1) find f(x)
2) find the values of ∫_0 ^∞ ((cos(t))/(1+t^2 ))dt and ∫_0 ^∞ ((cos(2t))/(4+t^2 ))dt
3) let U_n =∫_0 ^∞ ((cos(nt))/(n^2 +t^2 ))dt find lim_(n→+∞) U_n and study the convergenge of
Σ U_n and Σ U_n ^2