Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 243
Question Number 60716 Answers: 1 Comments: 1
Question Number 60692 Answers: 0 Comments: 0
$${find}\:\:\int\:\:{arctan}\left(\mathrm{2}{cosx}\right){dx}\: \\ $$
Question Number 60691 Answers: 0 Comments: 1
$${calculate}\:{f}\left({a}\right)\:=\:\int\:\:\:\left(\mathrm{1}−\frac{{a}}{{x}^{\mathrm{2}} }\right)\:{arctan}\left({x}+\frac{{a}}{{x}}\right){dx}\:\:\:{with}\:{a}\:{real}\:. \\ $$
Question Number 60690 Answers: 0 Comments: 0
$${find}\:\int\:\left({x}+\mathrm{3}\right)\sqrt{\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}\: \\ $$
Question Number 60688 Answers: 0 Comments: 0
$${find}\:\int\:\:\:{e}^{−{x}} \sqrt{\frac{\mathrm{3}−{x}}{\mathrm{3}+{x}}}{dx} \\ $$
Question Number 60687 Answers: 1 Comments: 2
$${calculate}\:\:\int\:\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{2}{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\mathrm{2}{x}}\:{dx} \\ $$
Question Number 60685 Answers: 1 Comments: 1
$${find}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}−{cos}\left({nx}\right)}{{sin}^{\mathrm{2}} \left({nx}\right)}{dx}\: \\ $$
Question Number 60686 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)\:={cos}\left(\mathrm{2}{x}\right)\:\:\:\:,\mathrm{2}\pi\:{periodic}\:,\:\:{developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$
Question Number 60683 Answers: 0 Comments: 0
$${find}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{sin}^{{n}} {xdx}\:\:\:\:{with}\:{n}\:{integr}\:{natural}\:. \\ $$
Question Number 60681 Answers: 0 Comments: 1
$${calculate}\:\:{L}\left({e}^{−\mathrm{2}{x}} {sin}\left(\alpha{x}\right)\right)\:\:\:\:\alpha\:{real}\:\:\:{and}\:{L}\:{laplace}\:{transform} \\ $$
Question Number 60680 Answers: 0 Comments: 2
$${study}\:{the}\:{integral}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}}{{ln}\left(\mathrm{1}−{x}\right)}{dx} \\ $$
Question Number 60679 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+{e}^{−{x}^{\mathrm{2}} } \right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}\:{dx} \\ $$
Question Number 60678 Answers: 0 Comments: 3
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}}\:{dx} \\ $$
Question Number 60670 Answers: 1 Comments: 2
Question Number 60675 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left[\frac{{ln}^{\mathrm{2}} \left({sin}\left({x}\right)\right)}{\pi^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({sinx}\right)}\right]\frac{{ln}\left({cos}\left({x}\right)\right)}{{tan}\left({x}\right)}{dx} \\ $$
Question Number 60662 Answers: 0 Comments: 0
Question Number 60659 Answers: 1 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 60658 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 60637 Answers: 1 Comments: 1
Question Number 60623 Answers: 0 Comments: 0
$$\mathrm{W}{hat}\:{are}\:{all}\:{intregal}\:{methods}\:{that}\:{exist} \\ $$$${like}\:{trigonometry}\:{sub}.\:{Gaussian}\:{method}\:{feyman}\:{method}\:? \\ $$$$ \\ $$$$ \\ $$
Question Number 60621 Answers: 0 Comments: 5
$${if}\:\pi\:{is}\:{rational}\:{then}\:{there} \\ $$$${exists}\:{a}\:{I}_{{n}} =\frac{{v}^{\mathrm{2}{n}} }{{n}!}\underset{\mathrm{0}} {\overset{\pi} {\int}}{x}^{{n}} \left({x}−\pi\right)^{{n}} {sin}\left({x}\right){dx} \\ $$$${can}\:{someone}\:{give}\:{a}\:{easier}\:{way}\:{to}\:{expaned}\:{this} \\ $$
Question Number 60631 Answers: 0 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\underset{−\infty} {\overset{\infty} {\int}}\mathrm{x}^{\mathrm{5}} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{sin}\left(\mathrm{x}^{\mathrm{3}} \right)\:\mathrm{dx}=\mathrm{0}.\mathrm{25474} \\ $$
Question Number 60586 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}^{\mathrm{2}} \left({x}\right)}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 60534 Answers: 0 Comments: 1
Question Number 60506 Answers: 0 Comments: 1
$${calculate}\:\int\int_{{W}} \:\:\:\:\:\frac{\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}{y}^{\mathrm{2}} }}{{x}+{y}}\:{dxdy} \\ $$$${with}\:{W}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}<{x}<\mathrm{1}\:{and}\:\mathrm{0}<{y}<\mathrm{1}.\right. \\ $$
Question Number 60498 Answers: 0 Comments: 4
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{3}} \sqrt{{t}\:+{x}\:+{x}^{\mathrm{2}} }{dx}\:\:{with}\:{t}\:\geqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{also}\:{g}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{3}} \:\:\:\frac{{dx}}{\sqrt{{t}+{x}\:+{x}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{3}} \:\sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{dx}\:,\:\int_{\mathrm{0}} ^{\mathrm{3}} \sqrt{\mathrm{2}\:+{x}+{x}^{\mathrm{2}} }{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{3}} \:\:\:\frac{{dx}}{\sqrt{\mathrm{2}+{x}\:+{x}^{\mathrm{2}} }}\:\:. \\ $$
Pg 238 Pg 239 Pg 240 Pg 241 Pg 242 Pg 243 Pg 244 Pg 245 Pg 246 Pg 247
Terms of Service
Privacy Policy
Contact: info@tinkutara.com