Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 243
Question Number 60311 Answers: 1 Comments: 2
$$\int\frac{{dx}}{\sqrt{{sec}\:{h}^{\mathrm{2}} \left({x}\right)+\mathrm{1}}}\:{dx} \\ $$
Question Number 60264 Answers: 0 Comments: 0
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{3}\:\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }{dx}\:\:{with}\:{t}>\mathrm{0} \\ $$$$\mathrm{1}.\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\mathrm{2}.\:{find}\:{also}\:{g}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{3}\left[{x}^{\mathrm{2}} \right]} }{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$$\mathrm{3}.\:{find}\:{the}\:{values}\:{of}\:{integrals}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{3}\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{3}\left[{x}^{\mathrm{2}} \right]} }{\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)^{\mathrm{2}} }\:{dx}\:. \\ $$
Question Number 60263 Answers: 0 Comments: 1
$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{n}\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} +\mathrm{3}}\:{dx}\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{n}\:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right){determine}\:{nature}\:{of}\:{the}\:{serie}\:\:\Sigma\:{U}_{{n}} \\ $$
Question Number 60234 Answers: 1 Comments: 0
Question Number 60170 Answers: 0 Comments: 0
$$\int{x}\mathrm{sec}\:^{\mathrm{3}} {xdx} \\ $$
Question Number 60050 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{\mathrm{3}} −\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$
Question Number 60036 Answers: 1 Comments: 0
Question Number 60027 Answers: 1 Comments: 0
$$\int{x}^{{i}} {dx}=? \\ $$
Question Number 60025 Answers: 0 Comments: 0
Question Number 59999 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} \:\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{n}\left[{x}^{\mathrm{2}} \right]} }{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{calvulate}\:\:{lim}_{{n}\rightarrow+\infty} \:\:\:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right){study}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$
Question Number 59998 Answers: 1 Comments: 3
$${find}\:\int\:\frac{{dx}}{{acosx}\:+{bsinx}}\:\:{with}\:{a}\:{and}\:{b}\:{reals} \\ $$
Question Number 59991 Answers: 0 Comments: 2
Question Number 59990 Answers: 0 Comments: 0
Question Number 59960 Answers: 1 Comments: 0
Question Number 59946 Answers: 1 Comments: 1
Question Number 59926 Answers: 2 Comments: 1
Question Number 59906 Answers: 0 Comments: 0
$$\int\left(\mathrm{2x}−\mathrm{1}\right)\mathrm{dx} \\ $$
Question Number 59905 Answers: 0 Comments: 1
$$\int\left(\mathrm{2x}−\mathrm{1}\hat {\right)}\mathrm{20} \\ $$
Question Number 59904 Answers: 0 Comments: 0
$$\left(\mathrm{2x}−\mathrm{1}\hat {\right)}\mathrm{20} \\ $$
Question Number 59902 Answers: 0 Comments: 1
$$\int\mathrm{sin}\:\left({x}\right){dx} \\ $$
Question Number 59901 Answers: 0 Comments: 0
$$\int\mathrm{sin}\:\left({x}\right) \\ $$
Question Number 59893 Answers: 0 Comments: 7
Question Number 59882 Answers: 0 Comments: 5
$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({x}\right)}{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}\:{dx} \\ $$
Question Number 59846 Answers: 0 Comments: 8
Question Number 59834 Answers: 1 Comments: 0
Question Number 59825 Answers: 0 Comments: 0
Pg 238 Pg 239 Pg 240 Pg 241 Pg 242 Pg 243 Pg 244 Pg 245 Pg 246 Pg 247
Terms of Service
Privacy Policy
Contact: info@tinkutara.com