calculate ∫_0 ^1 (x/(sinx))dx
let f(x) =sinx ⇒f(x) =f(0) +xf^′ (0) +(x^2 /2)f^((2)) (0)+(x^3 /(3!))f^((3)) (0) +o(x^4 )
but f(0) =0 f^′ (x) =cosx ⇒f^′ (0)=1 f^((2)) (x) =−sinx ⇒f^((2)) (0)=0
f^((3)) (0) =−cos(x) ⇒f^((3)) (0) =−1 ⇒sinx =x−(x^3 /6) +o(x^4 ) ⇒
x−(x^3 /3) ≤sinx ≤x for x ∈]0,1] (1/x) ≤(1/(sinx)) ≤(1/(x−(x^3 /6))) ⇒1≤(x/(sinx)) ≤(1/(1−(x^2 /6))) ⇒
1 ≤ ∫_0 ^1 (x/(sinx)) dx ≤ ∫_0 ^1 (dx/(1−(x^2 /6)))
∫_0 ^1 (dx/(1−(x^2 /6))) =_(x =(√6)t) ∫_0 ^(1/(√6)) (((√6)dt)/(1−t^2 )) =((√6)/2) ∫_0 ^(1/(√6)) ((1/(1−t)) +(1/(1+t)))dt
=((√6)/2)[ln∣((1+t)/(1−t))∣]_0 ^(1/(√6)) =((√6)/2) { ln(((1+(1/(√6)))/(1−(1/(√6)))))} =((√6)/2) ln((((√6)+1)/((√6)−1))) ⇒
1≤ ∫_0 ^1 (x/(sinx)) dx ≤ ((√6)/2)ln((((√6)+1)/((√6)−1))) .
|