Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 235

Question Number 63667    Answers: 0   Comments: 3

1) calculate ∫_0 ^(2π) (dt/(cost +x sint)) wih x from R. 2) calculate ∫_0 ^(2π) ((sint)/((cost +xsint)^2 ))dt 3) find[the value of ∫_0 ^(2π) (dt/(cos(2t)+2sin(2t)))

$$\left.\mathrm{1}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dt}}{{cost}\:+{x}\:{sint}}\:\:\:{wih}\:{x}\:{from}\:{R}. \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sint}}{\left({cost}\:+{xsint}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\left[{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{dt}}{{cos}\left(\mathrm{2}{t}\right)+\mathrm{2}{sin}\left(\mathrm{2}{t}\right)}\right. \\ $$

Question Number 63666    Answers: 0   Comments: 3

calculate ∫_0 ^(2π) (dx/(2sinx +cosx))

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{dx}}{\mathrm{2}{sinx}\:+{cosx}} \\ $$

Question Number 63664    Answers: 0   Comments: 6

let f(x)=∫_0 ^∞ (t^(a−1) /(x+t^n )) dt with 0<a<1 and x>0 and n≥2 1) determine a explicit form of f(x) 2) calculate g(x) =∫_0 ^∞ (t^(a−1) /((x+t^n )^2 )) dt 3) find f^((k)) (x) at form of integrals 4) calculate ∫_0 ^∞ (t^(a−1) /(9+t^2 )) dt and ∫_0 ^∞ (t^(a−1) /((9+t^2 )^2 )) 5) calculate U_n =∫_0 ^∞ (t^((1/n)−1) /(2^n +t^n )) dt and study the convergence of Σ U_n

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{{x}+{t}^{{n}} }\:{dt}\:\:\:{with}\:\mathrm{0}<{a}<\mathrm{1}\:\:{and}\:\:{x}>\mathrm{0}\:{and}\:{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\left({x}+{t}^{{n}} \right)^{\mathrm{2}} }\:{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{f}^{\left({k}\right)} \left({x}\right)\:{at}\:{form}\:{of}\:{integrals} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{9}+{t}^{\mathrm{2}} }\:{dt}\:\:\:\:{and}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{{a}−\mathrm{1}} }{\left(\mathrm{9}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{5}\right)\:{calculate}\:\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} }{\mathrm{2}^{{n}} \:+{t}^{{n}} }\:{dt}\:\:{and}\:{study}\:{the}\:{convergence}\:{of}\:\Sigma\:{U}_{{n}} \\ $$

Question Number 63662    Answers: 0   Comments: 1

let A_n =∫_0 ^∞ (x^(a−1) /(1+x^n ))dx with n integr and n≥2 and 0<a<1 1) calculate A_n 2) find the values of ∫_0 ^∞ (x^(a−1) /(1+x^2 ))dx and ∫_0 ^∞ (x^(a−1) /(1+x^3 ))dx 3)calculate ∫_0 ^∞ (dx/((√x)(1+x^4 ))) and ∫_0 ^∞ (dx/((^3 (√x^2 ))(1+x^4 )))

$$\:{let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{{a}−\mathrm{1}} }{\mathrm{1}+{x}^{{n}} }{dx}\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2}\:\:{and}\:\mathrm{0}<{a}<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{a}−\mathrm{1}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{a}−\mathrm{1}} }{\mathrm{1}+{x}^{\mathrm{3}} }{dx} \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\sqrt{{x}}\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} }\right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)} \\ $$

Question Number 63661    Answers: 0   Comments: 1

let 0<a<1 find the valueof ∫_0 ^∞ (t^(a−1) /(1+t^2 ))dt

$${let}\:\mathrm{0}<{a}<\mathrm{1}\:{find}\:{the}\:{valueof}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$

Question Number 63641    Answers: 0   Comments: 2

Question Number 63615    Answers: 0   Comments: 5

Question Number 63570    Answers: 1   Comments: 3

Question Number 63566    Answers: 0   Comments: 2

prove that ∫sin^n (x) dx , p∈n , p≥2 =− (1/n)cos(x) sin^(n−1) (x) + (p−1)∫sin^(n−2) (x) dx

$${prove}\:{that} \\ $$$$ \\ $$$$\int{sin}^{{n}} \left({x}\right)\:{dx}\:,\:{p}\in{n}\:,\:{p}\geqslant\mathrm{2}\:=−\:\frac{\mathrm{1}}{{n}}{cos}\left({x}\right)\:{sin}^{{n}−\mathrm{1}} \left({x}\right)\:+\:\left({p}−\mathrm{1}\right)\int{sin}^{{n}−\mathrm{2}} \left({x}\right)\:{dx} \\ $$

Question Number 63519    Answers: 0   Comments: 4

consider the general definite intergral I_n =∫_0 ^(π/2) sin^n xdx a) prove that for n≥2, nI_n =(n−1)I_(n−2) . b) Find the values of i)∫_0 ^(π/2) sin^5 dx ii) ∫_0 ^(π/2) sin^6 dx

$${consider}\:{the}\:{general}\:{definite}\:{intergral}\:\: \\ $$$$\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{n}} {xdx} \\ $$$$\left.{a}\right)\:{prove}\:{that}\:{for}\:{n}\geqslant\mathrm{2},\:{nI}_{{n}} =\left({n}−\mathrm{1}\right){I}_{{n}−\mathrm{2}} . \\ $$$$\left.{b}\left.\right)\left.\:{Find}\:{the}\:{values}\:{of}\:\:\boldsymbol{{i}}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{5}} {dx}\:\:\:\boldsymbol{{ii}}\right)\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{6}} {dx} \\ $$

Question Number 63510    Answers: 0   Comments: 1

let f(x)=∫_0 ^∞ (t^(a−1) /(x+t)) dt with x>0 and 0<a<1 1)calculate f(x) 2)calculate g(x)=∫_0 ^∞ (t^(a−1) /((x+t)^2 ))dt 3)find the value of∫_0 ^∞ (t^(a−1) /((1+t)^2 ))dt

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}−\mathrm{1}} }{{x}+{t}}\:{dt}\:{with}\:{x}>\mathrm{0} \\ $$$${and}\:\mathrm{0}<{a}<\mathrm{1} \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}−\mathrm{1}} }{\left({x}+{t}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$

Question Number 63509    Answers: 1   Comments: 1

calculate ∫_(−1) ^1 ((√(1+x^2 )) −(√(1−x^2 )))dx

$${calculate}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx} \\ $$

Question Number 63508    Answers: 0   Comments: 4

let f(x) =∫_(−∞) ^(+∞) (dt/((t^2 +ixt −1))) with ∣x∣>2 (i^2 =−1) 1) extract Re(f(x)) and Im(f(x)) 2) calculate f(x) 3) find olso g(x) =∫_(−∞) ^(+∞) (t/((t^2 +ixt −1)^2 ))dt 4) find values of integrals ∫_(−∞) ^(+∞) (dt/((t^2 +3it −1))) and ∫_(−∞) ^(+∞) ((tdt)/((t^2 +3it −1)^2 )) 5) give f^((n)) (x) at form of integrals.

$${let}\:\:{f}\left({x}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+{ixt}\:−\mathrm{1}\right)}\:\:{with}\:\mid{x}\mid>\mathrm{2}\:\:\:\left({i}^{\mathrm{2}} =−\mathrm{1}\right) \\ $$$$\left.\mathrm{1}\right)\:{extract}\:{Re}\left({f}\left({x}\right)\right)\:{and}\:{Im}\left({f}\left({x}\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:\:{find}\:{olso}\:{g}\left({x}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{t}}{\left({t}^{\mathrm{2}} \:+{ixt}\:−\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{4}\right)\:{find}\:{values}\:{of}\:{integrals}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{3}{it}\:−\mathrm{1}\right)}\:\:{and}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{tdt}}{\left({t}^{\mathrm{2}} \:+\mathrm{3}{it}\:−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{5}\right)\:{give}\:{f}^{\left({n}\right)} \left({x}\right)\:{at}\:{form}\:{of}\:{integrals}. \\ $$

Question Number 63433    Answers: 1   Comments: 1

∫_1 ^x x^2 −3x(√x)dx =((−716)/(15)) then calculate ∫_x ^(x+1) (1/(x+3))dx

$$\underset{\mathrm{1}} {\overset{{x}} {\int}}{x}^{\mathrm{2}} −\mathrm{3}{x}\sqrt{{x}}{dx}\:=\frac{−\mathrm{716}}{\mathrm{15}} \\ $$$${then}\:{calculate}\:\underset{{x}} {\overset{{x}+\mathrm{1}} {\int}}\frac{\mathrm{1}}{{x}+\mathrm{3}}{dx} \\ $$

Question Number 63410    Answers: 2   Comments: 2

Question Number 63405    Answers: 0   Comments: 0

find ∫ (√((x^2 −4x+1)/(x+2)))dx

$${find}\:\int\:\sqrt{\frac{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}}{{x}+\mathrm{2}}}{dx} \\ $$

Question Number 63404    Answers: 1   Comments: 2

1) find ∫ ((x+1)/(x^3 −3x −2))dx 2) calculate ∫_4 ^(+∞) ((x+1)/(x^3 −3x +2))dx

$$\left.\mathrm{1}\right)\:{find}\:\:\int\:\:\:\:\frac{{x}+\mathrm{1}}{{x}^{\mathrm{3}} −\mathrm{3}{x}\:−\mathrm{2}}{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{4}} ^{+\infty} \:\:\:\:\:\frac{{x}+\mathrm{1}}{{x}^{\mathrm{3}} −\mathrm{3}{x}\:+\mathrm{2}}{dx} \\ $$

Question Number 63395    Answers: 0   Comments: 3

let f(t) =∫_0 ^∞ ((ln(1+tx))/(1+x^2 ))dx with ∣t∣<1 1) determine a explicit form of f(t) 2) find the value of ∫_0 ^∞ ((ln(1+x))/(1+x^2 ))dx

$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+{tx}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:\:{with}\:\:\mid{t}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 63351    Answers: 3   Comments: 2

Question Number 63372    Answers: 1   Comments: 2

For what values of a and b will the integral ∫_a ^b (√(10−x−x^2 ))dx be at maximum

$${For}\:{what}\:{values}\:{of}\:{a}\:{and}\:{b}\:{will}\:{the} \\ $$$${integral}\:\int_{{a}} ^{{b}} \sqrt{\mathrm{10}−{x}−{x}^{\mathrm{2}} }{dx}\:{be}\:{at} \\ $$$${maximum} \\ $$

Question Number 63273    Answers: 0   Comments: 1

let F(x) =∫_x^2 ^x^3 ((sin(t))/(t+x)) dt 1) calculate lim_(x→0) F(x) and lim_(x→+∞) F(x) 2)calculste lim_(x→0) F^′ (x) and lim_(x→+∞) F^′ (x)

$${let}\:{F}\left({x}\right)\:=\int_{{x}^{\mathrm{2}} } ^{{x}^{\mathrm{3}} } \:\:\:\:\:\frac{{sin}\left({t}\right)}{{t}+{x}}\:{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{F}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} {F}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculste}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{F}^{'} \left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} \:{F}^{'} \left({x}\right) \\ $$

Question Number 63261    Answers: 0   Comments: 6

∫x tan(x) dx

$$\int{x}\:{tan}\left({x}\right)\:{dx} \\ $$

Question Number 63232    Answers: 0   Comments: 2

let B(x,y) =∫_0 ^1 (1−t)^(x−1) t^(y−1) dt 1) study the convergence of B(x,y) 1) prove that B(x,y)=B(y,x) prove that B(x,y) =∫_0 ^∞ (t^(x−1) /((1+t)^(x+y) )) dt 2) prove that B(x,y) =((Γ(x).Γ(y))/(Γ(x+y))) 3) prove that Γ(x).Γ(1−x) =(π/(sin(πx))) for allx ∈]0,1[

$${let}\:{B}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{x}−\mathrm{1}} {t}^{{y}−\mathrm{1}} \:{dt} \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{convergence}\:{of}\:{B}\left({x},{y}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{B}\left({x},{y}\right)={B}\left({y},{x}\right) \\ $$$${prove}\:{that}\:{B}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{x}−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{{x}+{y}} }\:{dt} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{B}\left({x},{y}\right)\:=\frac{\Gamma\left({x}\right).\Gamma\left({y}\right)}{\Gamma\left({x}+{y}\right)} \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)\:=\frac{\pi}{{sin}\left(\pi{x}\right)}\:\:\:{for}\:{allx}\:\in\right]\mathrm{0},\mathrm{1}\left[\right. \\ $$

Question Number 63251    Answers: 0   Comments: 0

∫_( 0) ^( (π/2)) sin^(−1) (m cosθ) dθ

$$\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{m}\:\mathrm{cos}\theta\right)\:\mathrm{d}\theta \\ $$

Question Number 63214    Answers: 0   Comments: 1

calculate ∫_0 ^∞ x e^(−(x^2 /a^2 )) sin(bx)dx with a>0 and b>0

$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:{x}\:{e}^{−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }} \:\:{sin}\left({bx}\right){dx}\:\:{with}\:\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$

Question Number 63268    Answers: 0   Comments: 0

  Pg 230      Pg 231      Pg 232      Pg 233      Pg 234      Pg 235      Pg 236      Pg 237      Pg 238      Pg 239   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com