Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 23

Question Number 190552    Answers: 1   Comments: 1

∫_(1/2) ^2 ln(((ln(x+(1/x)))/(ln(x^2 −x+((17)/6)))))dx=?

122ln(ln(x+1x)ln(x2x+176))dx=?

Question Number 190533    Answers: 1   Comments: 0

Question Number 190487    Answers: 1   Comments: 0

Question Number 190419    Answers: 1   Comments: 0

∫_(−1) ^1 ∫_(−(√(1−y^2 ))) ^(√(1−y^2 )) ln (x^2 +y^2 +1)dx dy =?

111y21y2ln(x2+y2+1)dxdy=?

Question Number 190385    Answers: 1   Comments: 0

Question Number 190371    Answers: 1   Comments: 0

Question Number 190360    Answers: 3   Comments: 0

if x+ (1/x) = ϕ ( Golden ratio) ⇒ x^( 2000) + (1/x^( 2000) )=?

ifx+1x=φ(Goldenratio)x2000+1x2000=?

Question Number 190318    Answers: 2   Comments: 0

Question Number 190172    Answers: 1   Comments: 0

Integrate ∫_0 ^1 Sin^2 (2Πx)dx

Integrate01Sin2(2Πx)dx

Question Number 190168    Answers: 0   Comments: 2

1)∫^∞ _0 ((sin x)/(x^p +sin x))dx ,p>0 2)∫^∞ _π ((xcos x)/(x^p +x^q ))dx,p>0and q>0 3)∫^∞ _0 ((sin x^p )/( x^q ))dx, p>0,q>0 4)∫^2 _0 (dx/(∣ln x∣^p )) ,p>0 5)∫^1 _0 ((cos(1/(1−x)))/( ((1−x^2 ))^(1/n) ))dx 6)∫^∞ _0 (dx/(x^p ((sin^2 x))^(1/3) ))

1)0sinxxp+sinxdx,p>02)πxcosxxp+xqdx,p>0andq>03)0sinxpxqdx,p>0,q>04)02dxlnxp,p>05)01cos11x1x2ndx6)0dxxpsin2x3

Question Number 190009    Answers: 0   Comments: 2

Question Number 189949    Answers: 1   Comments: 0

Question Number 189890    Answers: 0   Comments: 0

Question Number 189825    Answers: 2   Comments: 0

∫^b _a (√((x−a)(b−x)))=¿

ab(xa)(bx)=¿

Question Number 189756    Answers: 0   Comments: 0

Question Number 189752    Answers: 1   Comments: 0

∫^∞ _0 x^2 .e^(−x^2 ) dx=¿

0x2.ex2dx=¿

Question Number 189639    Answers: 1   Comments: 1

(((20)),(( 0)) ) (((10)),(( 1)) ) + (((20)),(( 1)) ) (((10)),(( 2)) ) +...+ ((( 20)),(( 9)) ) ((( 10)),(( 10)) ) =?

(200)(101)+(201)(102)+...+(209)(1010)=?

Question Number 189549    Answers: 1   Comments: 0

∫_0 ^( 1) ∫_0 ^( 1) ((dxdy)/((1+xy )^( 4) ))=?

0101dxdy(1+xy)4=?

Question Number 189496    Answers: 2   Comments: 0

∫ xe^(x^2 /2) dx

xex22dx

Question Number 189489    Answers: 1   Comments: 1

Ω= ∫_0 ^( ∞) e^( −x) cos(x)ln(x)dx=? −−− f (a )= ∫_0 ^( ∞) e^( −x) cos(x)x^( a) dx = Re ∫_0 ^( ∞) e^( −x) .e^( −ix) .x^( a) dx = Re ∫_0 ^( ∞) e^( −x (1+i)) .x^( a) dx = Re(L { x^( a) }∣_( s= i+1) ) = Re( ((Γ (1+a))/s^( a+1) ) ∣_( 1+i) = ((Γ (1+a))/((1+i)^( a+1) )) ) Re (Γ(1+a).2^( ((1+a)/2)) . e^( −((iπ)/4) (1+a)) ) Ω= f ′(0)=.......

Ω=0excos(x)ln(x)dx=?f(a)=0excos(x)xadx=Re0ex.eix.xadx=Re0ex(1+i).xadx=Re(L{xa}s=i+1)=Re(Γ(1+a)sa+11+i=Γ(1+a)(1+i)a+1)Re(Γ(1+a).21+a2.eiπ4(1+a))Ω=f(0)=.......

Question Number 189418    Answers: 1   Comments: 0

Know: f(x)=3x+2+∫^1 _0 xf(x)dx Eluavte: ∫^2 _0 f(x)dx=¿

Know:f(x)=3x+2+01xf(x)dxEluavte:02f(x)dx=¿

Question Number 189390    Answers: 0   Comments: 0

Question Number 189345    Answers: 1   Comments: 0

solve ∫t^(−6) (t^2 +3)^2 dt

solvet6(t2+3)2dt

Question Number 189325    Answers: 2   Comments: 0

prove Ω= ∫_0 ^(π/2) (( cos(x)+cos(5x))/(1+ 2sin(x))) =^( ?) (3/2)

proveΩ=0π2cos(x)+cos(5x)1+2sin(x)=?32

Question Number 189323    Answers: 1   Comments: 0

Question Number 189293    Answers: 1   Comments: 0

  Pg 18      Pg 19      Pg 20      Pg 21      Pg 22      Pg 23      Pg 24      Pg 25      Pg 26      Pg 27   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com