Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 223
Question Number 66540 Answers: 0 Comments: 0
$${graph}\:{the}\:{function}\:{r}^{\mathrm{2}} ={cos}\left(\mathrm{2}\theta\right)\:{and}\:{find}\:{the}\:{area}? \\ $$
Question Number 66536 Answers: 0 Comments: 0
$$\int{ln}^{\mathrm{10}} \left({x}\right)\:{sin}^{\mathrm{7}} \left({x}\right)\:{dx} \\ $$
Question Number 66520 Answers: 0 Comments: 1
$${find}\:{the}\:{length}\:{r}=\mathrm{2}/\mathrm{1}−{cos}\theta\:\:\:\:\:\:\:\:\:{if}\:\theta\:{between}\:{pi}/\mathrm{2}\:{to}\:{pi} \\ $$
Question Number 66517 Answers: 1 Comments: 1
$${find}\:{the}\:{area}\:{cos}\left(\mathrm{2}\theta\right) \\ $$
Question Number 66502 Answers: 1 Comments: 0
$${find}\:{the}\:{area}\:{about}\:{cos}\left(\mathrm{2}\theta\right) \\ $$
Question Number 66483 Answers: 0 Comments: 4
$$\:{calculate}\:\:\:\:\underset{{k}=\mathrm{2}} {\overset{\infty} {\sum}}\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\:\zeta\left({k}\right)\:\:\:\:\:\:\:{if}\:\:\:\:\zeta\left({s}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{1}}{{n}^{{s}} }\: \\ $$
Question Number 66476 Answers: 0 Comments: 1
Question Number 66474 Answers: 0 Comments: 2
$$\int{e}^{{x}^{\mathrm{2}} } {dx}=? \\ $$
Question Number 66470 Answers: 0 Comments: 5
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left({x}^{{n}} \:+\mathrm{8}\right)^{\mathrm{3}} }\:\:{withn}>\mathrm{1} \\ $$
Question Number 66468 Answers: 0 Comments: 1
$${calculate}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{{n}} \:+\mathrm{3}\right)^{\mathrm{2}} }\:\:{with}\:{n}>\mathrm{1} \\ $$
Question Number 66466 Answers: 0 Comments: 1
$${find}\:\:{f}\left({a},{b}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left({ax}\right){cos}\left({bx}\right)}{\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} \:+{b}^{\mathrm{2}} \right)}{dx}\:\:{with}\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({x}\right){cos}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)}{dx} \\ $$
Question Number 66465 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{2}{i}\right)\left(\:{x}^{\mathrm{2}} \:+\mathrm{4}{j}\right)}\:\:\:{with}\:{i}={e}^{\frac{{i}\pi}{\mathrm{2}}} \:{and}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$
Question Number 66464 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left({x}^{\mathrm{2}} +\mathrm{8}\right)^{\mathrm{2}} } \\ $$
Question Number 66459 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{calculate}\:{by}\:{residus}\:{method}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}+{x}^{\mathrm{4}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }{dx} \\ $$
Question Number 66446 Answers: 0 Comments: 1
$$\:\:{Find}\:\:\:\:\int_{\mathrm{1}} ^{\infty} \:\left(\frac{\mathrm{1}}{{E}\left({x}\right)}\:−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$
Question Number 66405 Answers: 0 Comments: 0
Question Number 66404 Answers: 0 Comments: 3
Question Number 66403 Answers: 0 Comments: 0
Question Number 66401 Answers: 0 Comments: 0
Question Number 66351 Answers: 0 Comments: 1
$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{{nt}} }{\left(\mathrm{1}+{e}^{{t}} \right)^{{n}+\mathrm{1}} }{dt}\:\:\:\:\:\left({n}\:{from}\:{N}^{\bigstar} \right) \\ $$$$\left.\right){prove}\:{the}\:{existence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:{I}_{{n}} \\ $$
Question Number 66350 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{1}−\sqrt{\frac{{x}^{{n}} }{\mathrm{2}+{x}^{{n}} }}\right){dx}\:\:\:\:{n}\in{N} \\ $$
Question Number 66349 Answers: 0 Comments: 1
$${study}\:{the}\:{convergence}\:{of}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{arctan}\left({x}−\mathrm{1}\right)}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }{dx} \\ $$
Question Number 66348 Answers: 0 Comments: 0
$${find}\:{nature}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{e}^{{x}} −{cosx}} \\ $$
Question Number 66347 Answers: 0 Comments: 0
$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} {ln}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{existence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{I}_{{n}+\mathrm{1}} −{I}_{{n}} \\ $$$$\left.\mathrm{3}\left.\right){prove}\:{thst}\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\Rightarrow\mathrm{0}<\frac{{xlnx}}{{x}^{\mathrm{2}} −\mathrm{1}}<\frac{\mathrm{1}}{\mathrm{2}}\right. \\ $$$$\left.\mathrm{4}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} \\ $$
Question Number 66346 Answers: 0 Comments: 2
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{7}} }{{t}^{\mathrm{16}} \:+\mathrm{1}}{dt} \\ $$
Question Number 66345 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{2}{t}\:+\mathrm{2}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$
Pg 218 Pg 219 Pg 220 Pg 221 Pg 222 Pg 223 Pg 224 Pg 225 Pg 226 Pg 227
Terms of Service
Privacy Policy
Contact: info@tinkutara.com