Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 223
Question Number 67385 Answers: 0 Comments: 0
$${find}\:\int\:{x}\left(\sqrt{\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }}\right){dx} \\ $$
Question Number 67374 Answers: 0 Comments: 3
$${find}\:\int\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){arctan}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$
Question Number 67373 Answers: 1 Comments: 4
$${simplify}\:\:\:{S}_{{n}} \left({x}\right)\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{cos}^{\mathrm{4}} \left(\pi{kx}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{3}}} \:{S}_{{n}} \left({x}\right){dx} \\ $$
Question Number 67359 Answers: 1 Comments: 1
$$\int{siny}/{y}\:\:{dy} \\ $$
Question Number 67342 Answers: 0 Comments: 1
$${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{\infty} \:\:\:\frac{{sin}\left(\mathrm{2}{x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} −{x}\:+\mathrm{3}\right)^{\mathrm{3}} }{dx} \\ $$
Question Number 67310 Answers: 1 Comments: 2
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$
Question Number 67246 Answers: 2 Comments: 4
$${Integrate}: \\ $$$$\left.\mathrm{1}\right)\:\underset{\mathrm{3}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{1}/{x}\:{dx}}{{ln}\left({x}\right)\sqrt{{ln}^{\mathrm{2}} {x}−\mathrm{1}}} \\ $$$$\left.\mathrm{2}\right)\:\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{{e}^{{x}} {dx}}{\mathrm{1}+{e}^{\mathrm{2}{x}} } \\ $$$$\left.\mathrm{3}\right)\:\underset{\mathrm{1}} {\overset{\infty} {\int}}\:\frac{\mathrm{2}^{{x}} {dx}}{{x}+\mathrm{1}} \\ $$$$\left.\mathrm{4}\right)\:\underset{\mathrm{2}} {\overset{\infty} {\int}}\:\frac{\sqrt{{x}}}{{ln}\left({x}\right)}{dx} \\ $$
Question Number 67235 Answers: 0 Comments: 1
$${find}\:\:\int_{−\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{3}}} \:{x}^{\mathrm{2}} \left\{{cosx}−{sinx}\right\}^{\mathrm{3}} {dx} \\ $$
Question Number 67233 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{xdx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }} \\ $$
Question Number 67231 Answers: 2 Comments: 0
$$\left.{find}\:\int{x}/{x}^{\mathrm{5}} −\mathrm{1}\right)\:{dx} \\ $$
Question Number 67197 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{2}} {x}^{\mathrm{5}} \left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)^{\mathrm{4}} {dx} \\ $$
Question Number 67153 Answers: 2 Comments: 0
$${find}\:\int\left({v}^{\mathrm{3}} −\mathrm{2}\right)/\left({v}^{\mathrm{4}} +{v}\:\:\right){dv} \\ $$
Question Number 67138 Answers: 0 Comments: 1
$${find}\:{the}\:{area}\:{abounded}\:{y}=\sqrt{{x}} \\ $$$${and}\:{y}={x}−\mathrm{2}? \\ $$
Question Number 67106 Answers: 0 Comments: 1
$${find}\:{the}\:{area}\:{abounded}\:{y}=\sqrt{{x}} \\ $$$${afind}\:{y}={x}−\mathrm{2}? \\ $$
Question Number 67105 Answers: 0 Comments: 0
Question Number 67070 Answers: 0 Comments: 3
Question Number 67069 Answers: 0 Comments: 1
Question Number 67059 Answers: 0 Comments: 1
$${find}\:{the}\:{area}\:{abounded}\:{y}=\sqrt{{x}−\mathrm{2}} \\ $$$${and}\:{y}={x}−\mathrm{2}\:? \\ $$
Question Number 67058 Answers: 0 Comments: 0
Question Number 67038 Answers: 1 Comments: 1
$${calculate}\:\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{sinx}} }{dx}\:\:\:{with}\:{n}\:{integr}. \\ $$
Question Number 67035 Answers: 1 Comments: 2
Question Number 67022 Answers: 0 Comments: 0
$${find}\:\int\:\left(\mathrm{1}+\sqrt{{x}}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}{dx} \\ $$
Question Number 67021 Answers: 0 Comments: 1
$${find}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\:+{e}^{−{t}} \right){dt}\:\:\:{with}\:{x}>\mathrm{0} \\ $$
Question Number 67020 Answers: 0 Comments: 1
$${find}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left(\mathrm{1}+{xt}\right){dt}\:\:{with}\:{x}\:{real} \\ $$
Question Number 67019 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}^{\mathrm{2}} } {arctan}\left({x}^{\mathrm{2}} \right){dx}\: \\ $$
Question Number 67018 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {ln}\left(\mathrm{1}+{x}\right){dx} \\ $$
Pg 218 Pg 219 Pg 220 Pg 221 Pg 222 Pg 223 Pg 224 Pg 225 Pg 226 Pg 227
Terms of Service
Privacy Policy
Contact: info@tinkutara.com