let f(x) =∫_0 ^∞ ((sin(t^2 ))/((x^2 +t^2 )^2 ))dt with x>0
1)determine a explicit form for f(x)
2) find also g(x) =∫_0 ^∞ ((sin(t^2 ))/((x^2 +t^2 )^3 ))dt
3) give f^((n)) (x) at form of integral and calculate f^((n)) (1).
4) find the valueof ∫_0 ^∞ ((sin(t^2 ))/((1+t^2 )^2 )) dt and ∫_0 ^∞ ((sin(t^2 ))/((1+t^2 )^3 ))dt
let f(a) =∫_0 ^∞ (dx/((x^2 +1)(x^2 +a))) with a>0
1) determine a explicit form of f(a)
2) calculate g(a) =∫_0 ^∞ (dx/((x^2 +1)(x^2 +a)^2 ))
3)give f^((n)) (a) at form of integral
4)calculate ∫_0 ^∞ (dx/((x^2 +1)(x^2 +3)^2 )) and
∫_0 ^∞ (dx/((x^2 +1)^3 ))
let f(a) =∫_(−∞) ^(+∞) (dx/((x^2 +1)(a +e^(ix) ))) with a>0
1)find a explicit form of f(a)
2) determine also g(a)=∫_(−∞) ^(+∞) (dx/((x^2 +1)(a+e^(ix) )^2 ))
3)let I =Re(∫_(−∞) ^(+∞) (dx/((x^2 +1)(2+e^(ix) )))) and J=Im(∫_(−∞) ^(+∞) (dx/((x^2 +1)(2+e^x ))))
determine I and J and its values.