Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 217

Question Number 71499    Answers: 1   Comments: 1

Question Number 71490    Answers: 2   Comments: 2

Question Number 71314    Answers: 2   Comments: 1

find ∫_(−1) ^1 ln((√(1+x))+(√(1−x)))dx

$${find}\:\int_{−\mathrm{1}} ^{\mathrm{1}} {ln}\left(\sqrt{\mathrm{1}+{x}}+\sqrt{\mathrm{1}−{x}}\right){dx} \\ $$

Question Number 71239    Answers: 2   Comments: 3

∫(1/(2cosx−5sinx−3))dx

$$\int\frac{\mathrm{1}}{\mathrm{2cosx}−\mathrm{5sinx}−\mathrm{3}}\mathrm{dx} \\ $$

Question Number 71220    Answers: 0   Comments: 0

Question Number 71197    Answers: 0   Comments: 0

Question Number 71175    Answers: 1   Comments: 3

∫(1/(x^2 +2016x))dx

$$\int\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{2016x}}\mathrm{dx} \\ $$

Question Number 71142    Answers: 0   Comments: 1

find ∫(√(x(x+1)(x+2)))dx

$${find}\:\int\sqrt{{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}{dx} \\ $$

Question Number 71091    Answers: 0   Comments: 3

Question Number 71014    Answers: 0   Comments: 0

calculate ∫_0 ^∞ e^(−(x^2 +(1/x^2 ))) dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)} {dx} \\ $$

Question Number 70909    Answers: 1   Comments: 2

Question Number 70873    Answers: 1   Comments: 0

calculate ∫∫_([1,3]^2 ) e^(−x−y) ln(2x+y)dxdy

$${calculate}\:\int\int_{\left[\mathrm{1},\mathrm{3}\right]^{\mathrm{2}} } \:\:\:{e}^{−{x}−{y}} \:{ln}\left(\mathrm{2}{x}+{y}\right){dxdy} \\ $$

Question Number 70872    Answers: 0   Comments: 1

calculate ∫∫_([1,3]^2 ) e^(−x−y) ln(2x+y)dxdy

$${calculate}\:\int\int_{\left[\mathrm{1},\mathrm{3}\right]^{\mathrm{2}} } \:\:\:{e}^{−{x}−{y}} \:{ln}\left(\mathrm{2}{x}+{y}\right){dxdy} \\ $$

Question Number 70871    Answers: 0   Comments: 1

calculate f(x)=∫_(−∞) ^(+∞) ((cos(x(1+t^2 )))/(1+t^2 ))dt with x≥0

$$\:{calculate}\:{f}\left({x}\right)=\int_{−\infty} ^{+\infty} \:\frac{{cos}\left({x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:{with}\:{x}\geqslant\mathrm{0} \\ $$

Question Number 70870    Answers: 0   Comments: 4

let f(x)=∫_(−∞) ^(+∞) (dt/((t^2 −2t +x^2 )^4 )) with ∣x∣>1 and n integr natural 1)find a explicit form for f(x) 2) determine also g(x)=∫_(−∞) ^(+∞) (dt/((t^2 −2t +x^2 )^5 )) 3)find the values of integrals ∫_(−∞) ^(+∞) (dt/((t^2 −2t +3)^4 )) and ∫_(−∞) ^(+∞) (dt/((t^2 −2t +3)^5 ))

$${let}\:{f}\left({x}\right)=\int_{−\infty} ^{+\infty} \:\:\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{2}{t}\:+{x}^{\mathrm{2}} \right)^{\mathrm{4}} }\:\:{with}\:\:\mid{x}\mid>\mathrm{1} \\ $$$${and}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{also}\:{g}\left({x}\right)=\int_{−\infty} ^{+\infty} \:\:\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{2}{t}\:+{x}^{\mathrm{2}} \right)^{\mathrm{5}} } \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{values}\:{of}\:{integrals}\: \\ $$$$\int_{−\infty} ^{+\infty} \:\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{2}{t}\:+\mathrm{3}\right)^{\mathrm{4}} }\:\:{and}\:\int_{−\infty} ^{+\infty} \:\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{2}{t}\:+\mathrm{3}\right)^{\mathrm{5}} } \\ $$

Question Number 70842    Answers: 0   Comments: 1

Question Number 70818    Answers: 1   Comments: 1

what the prove that ∫_a ^b f(x) dx =∫_a ^b f(a+b−x) dx

$$\mathrm{what}\:\mathrm{the}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{a}+\mathrm{b}−\mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 70808    Answers: 1   Comments: 0

Question Number 70784    Answers: 1   Comments: 2

Question Number 70696    Answers: 1   Comments: 4

∫x^x dx=?

$$\int{x}^{{x}} {dx}=? \\ $$

Question Number 70686    Answers: 2   Comments: 0

find ∫ (dx/(1+x^6 ))

$${find}\:\int\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{6}} } \\ $$

Question Number 70651    Answers: 0   Comments: 3

Question Number 70602    Answers: 0   Comments: 1

I=∫_0 ^∞ ln((√(1−x)) +(√(1+x)))dx

$$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \mathrm{ln}\left(\sqrt{\mathrm{1}−\mathrm{x}}\:+\sqrt{\mathrm{1}+\mathrm{x}}\right)\mathrm{dx} \\ $$

Question Number 70594    Answers: 1   Comments: 1

calculate by residus method the integral ∫_0 ^∞ (dx/((1+x^2 )^n )) with n integr and n≥1

$${calculate}\:{by}\:{residus}\:{method}\:{the}\:{integral}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} } \\ $$$${with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1} \\ $$

Question Number 70571    Answers: 0   Comments: 1

Question Number 70483    Answers: 1   Comments: 3

∫((ln2x)/(ln4x)).(dx/x)

$$\int\frac{{ln}\mathrm{2}{x}}{{ln}\mathrm{4}{x}}.\frac{{dx}}{{x}} \\ $$

  Pg 212      Pg 213      Pg 214      Pg 215      Pg 216      Pg 217      Pg 218      Pg 219      Pg 220      Pg 221   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com