Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 217
Question Number 70369 Answers: 0 Comments: 1
Question Number 70361 Answers: 0 Comments: 0
$${Hello}\: \\ $$$${si}\left({x}\right)=−\int_{{x}} ^{\infty} \frac{{sin}\left({x}\right)}{{x}}{dx} \\ $$$${show}\:\int_{\mathrm{0}} ^{+\infty} {x}^{{a}−\mathrm{1}} {si}\left({x}\right){dx}=−\frac{\Gamma\left({a}\right){sin}\left(\frac{\pi{a}}{\mathrm{2}}\right)}{{a}} \\ $$$${hint}\:{ipp}\:+{complex}\:{Analysis} \\ $$
Question Number 70262 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cosx}\right){dx}\:\:{and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({sinx}\right){dx} \\ $$
Question Number 70230 Answers: 0 Comments: 2
Question Number 70237 Answers: 0 Comments: 3
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xsin}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}\:{with}\:\alpha\:{real} \\ $$
Question Number 70150 Answers: 0 Comments: 1
$${prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\left(\mathrm{4}−{sin}^{\mathrm{2}} {x}\right)}{dx}\:<\:\frac{\pi\sqrt{\mathrm{14}}}{\mathrm{4}} \\ $$
Question Number 70031 Answers: 0 Comments: 0
$$\int\left[{x}\right]{dx} \\ $$
Question Number 70718 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{tan}^{−\mathrm{1}} \mathrm{x}}{\mathrm{1}+\mathrm{x}}\mathrm{dx} \\ $$
Question Number 69789 Answers: 0 Comments: 0
$${solve}\:{sin}\left(\mathrm{2}{x}\right){y}^{'} \:−\mathrm{3}\left({cosx}\right){y}\:={xe}^{−{x}} \\ $$
Question Number 69784 Answers: 0 Comments: 0
$${calculate}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} \:+\frac{{a}}{{x}^{\mathrm{2}} }\right)} {dx}\:\:{with}\:{a}>\mathrm{0} \\ $$
Question Number 69692 Answers: 0 Comments: 0
Question Number 69637 Answers: 1 Comments: 0
$$...\mathrm{now}\:\mathrm{try}\:\mathrm{this}\:\mathrm{one}: \\ $$$$\int\frac{{dx}}{{x}^{\mathrm{1}/\mathrm{2}} −{x}^{\mathrm{1}/\mathrm{3}} −{x}^{\mathrm{1}/\mathrm{6}} }= \\ $$
Question Number 69623 Answers: 1 Comments: 0
$$\int\frac{\mathrm{1}}{\sqrt{{x}}\:+\:\sqrt[{\mathrm{3}}]{{x}}}\:{dx} \\ $$
Question Number 69603 Answers: 1 Comments: 0
$$\int\:{x}^{\mathrm{3}} {arcsinxdx} \\ $$
Question Number 69597 Answers: 1 Comments: 1
Question Number 69573 Answers: 0 Comments: 1
Question Number 69570 Answers: 0 Comments: 0
Question Number 69566 Answers: 1 Comments: 0
Question Number 69565 Answers: 0 Comments: 0
Question Number 69564 Answers: 0 Comments: 3
$${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} \:+{a}}\:\:\:{with}\:{a}\:{real}\:{and}\:{a}>\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{calculate}\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +{a}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{values}\:{of}\:{integrals}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}} \\ $$$${and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$ \\ $$
Question Number 69563 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$
Question Number 69502 Answers: 3 Comments: 2
$$\int\frac{\mathrm{3sinx}+\mathrm{4cosx}}{\mathrm{4sinx}+\mathrm{3cosx}}\mathrm{dx} \\ $$
Question Number 69390 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{1}+{x}\right)^{\alpha} −\left(\mathrm{1}+{x}\right)^{\left(\beta\right.} }{{x}}{dx} \\ $$$${and}\:{determine}\:{its}\:{value} \\ $$
Question Number 69389 Answers: 0 Comments: 0
$${find}\:\int_{\mid{z}+{i}\mid=\mathrm{3}} \:\:\frac{{sinz}}{{z}+{i}}{dz} \\ $$
Question Number 69379 Answers: 0 Comments: 1
$${calculste}\:{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx}\:\:\:{with}\:{a}>\mathrm{0} \\ $$
Question Number 69375 Answers: 0 Comments: 0
$${let}\:{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\alpha\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right){determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left(\alpha\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$
Pg 212 Pg 213 Pg 214 Pg 215 Pg 216 Pg 217 Pg 218 Pg 219 Pg 220 Pg 221
Terms of Service
Privacy Policy
Contact: info@tinkutara.com