let x>0 and f(x)=∫_1 ^2 (t+1)(√(t^2 −2xt−1))dt
1) find a explicit form of f(x)
2) determine also g(x)=∫_1 ^2 ((t^2 +t)/(√(t^2 −2xt−1)))dt
3)find the value of integrals ∫_1 ^2 (t+1)(√(t^2 −t−1))dt
and ∫_1 ^2 ((t^(2 ) +t)/(√(t^2 −t−1)))dt .
let f(x) =∫_0 ^(π/4) (dt/(x+tant)) with x real
1) find aexplicit form of f(x)
2)find also g(x) =∫_0 ^(π/4) (dt/((x+tant)^2 ))
3)give f^((n)) (x)at form of integral
4)calculate ∫_0 ^(π/4) (dt/(2+tant)) and ∫_0 ^(π/4) (dt/((2+tant)^2 ))