Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 213
Question Number 74889 Answers: 1 Comments: 1
$${find}\:\int_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{+\infty} \:\:{e}^{−{x}} \sqrt{\mathrm{2}{x}+\mathrm{1}}{dx} \\ $$
Question Number 74888 Answers: 1 Comments: 3
$${calculate}\:{f}\left(\alpha\right)=\int\sqrt{{x}^{\mathrm{2}} −{x}+\alpha}{dx}\:\:\left(\alpha\:{real}\right) \\ $$
Question Number 74886 Answers: 0 Comments: 1
$${calculate}\:\int\:\:\frac{{x}+\mathrm{1}}{\left({x}^{\mathrm{3}} +{x}−\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 74861 Answers: 1 Comments: 0
Question Number 74799 Answers: 1 Comments: 0
$${prove}\:{that}\:\mathrm{0}\leqslant\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{2}} \:{e}^{−{nt}} }{{e}^{{t}} −\mathrm{1}}{dt}\:\leqslant\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:{for}\:{n}\:{integr}\:{not}\:\mathrm{0} \\ $$
Question Number 74798 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{1}−\mathrm{2}{xcos}\theta\:+{x}^{\mathrm{2}} \right){d}\theta\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$
Question Number 74796 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \left\{{arcsin}\left(\frac{\mathrm{1}}{{n}}\right)−\frac{\mathrm{1}}{{n}}\right\}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${study}\:{the}\:{convergence}\:{of}\:\Sigma\:{U}_{{n}} \\ $$
Question Number 74793 Answers: 1 Comments: 1
$${prove}\:{the}\:{convergence}\:{of}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+\sqrt{{x}}\right)}{\sqrt{{x}}}{dx} \\ $$
Question Number 74720 Answers: 2 Comments: 5
Question Number 74944 Answers: 0 Comments: 0
$$\int\frac{{e}^{−{cos}\left(\mathrm{2}{x}\right)} }{{sin}^{\mathrm{2}} \left({x}\right)}\:{dx} \\ $$
Question Number 74621 Answers: 1 Comments: 1
Question Number 74620 Answers: 1 Comments: 0
Question Number 74514 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{\left({x}−{sin}\theta\right){d}\theta}{\left({x}^{\mathrm{2}} −\mathrm{2}{x}\:{sin}\theta\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 74500 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{{x}^{\mathrm{3}} −\mathrm{2}}{\left({x}+\mathrm{1}\right)^{\mathrm{4}} \left({x}−\mathrm{2}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right){find}\:\:\:\int_{\mathrm{3}} ^{+\infty} \:{F}\left({x}\right){dx} \\ $$
Question Number 74492 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$
Question Number 74484 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{3}}{dx} \\ $$
Question Number 74446 Answers: 1 Comments: 0
Question Number 75089 Answers: 0 Comments: 4
$$\int\mathrm{sin}\:\left({x}^{\mathrm{3}} +{c}\right)\:{dx}=? \\ $$$$\int\mathrm{sinh}\:\left({x}^{\mathrm{3}} +{c}\right)\:{dx}=? \\ $$
Question Number 74394 Answers: 1 Comments: 4
Question Number 74367 Answers: 0 Comments: 2
$${Solve}\:: \\ $$$$\left({D}^{\mathrm{4}} +\mathrm{4}\right){y}=\mathrm{0}\: \\ $$$${given}:\:{y}\left(\mathrm{0}\right)=\mathrm{0}\:,\:{y}'\left(\mathrm{0}\right)=\mathrm{2}\:,\:{y}''\left(\mathrm{0}\right)=\mathrm{0}\:{and} \\ $$$${y}'''\left(\mathrm{0}\right)=\mathrm{4}. \\ $$
Question Number 74395 Answers: 0 Comments: 2
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\mathrm{2}{x}} \left[{e}^{{x}} \right]{dx} \\ $$
Question Number 74349 Answers: 0 Comments: 2
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}\pi{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 74348 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({sin}\left({x}^{\mathrm{2}} \right)\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$
Question Number 74347 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{arctan}\left({cos}\left(\pi{x}^{\mathrm{2}} \right)\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$
Question Number 74346 Answers: 1 Comments: 0
$${find}\:\int\:\:\frac{{x}+\sqrt{{x}+\mathrm{1}}}{\mathrm{2}\sqrt{{x}−\mathrm{1}}+\mathrm{3}}{dx} \\ $$
Question Number 74344 Answers: 1 Comments: 1
$${calculate}\:\int\:\:\:\:\:\frac{{x}^{\mathrm{2}} −{x}+\mathrm{3}}{{x}^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$
Pg 208 Pg 209 Pg 210 Pg 211 Pg 212 Pg 213 Pg 214 Pg 215 Pg 216 Pg 217
Terms of Service
Privacy Policy
Contact: info@tinkutara.com