Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 201

Question Number 82573    Answers: 0   Comments: 4

Question Number 82571    Answers: 0   Comments: 0

Question Number 82568    Answers: 1   Comments: 0

∫ (1/(tan x+cot x+sec x+cosec x)) dx ?

$$\int\:\frac{\mathrm{1}}{\mathrm{tan}\:{x}+\mathrm{cot}\:{x}+\mathrm{sec}\:{x}+\mathrm{cosec}\:{x}}\:{dx}\:? \\ $$

Question Number 82566    Answers: 2   Comments: 1

∫ (√((x+1)/x)) dx = ?

$$\int\:\sqrt{\frac{{x}+\mathrm{1}}{{x}}}\:{dx}\:=\:? \\ $$

Question Number 82560    Answers: 1   Comments: 0

Use gamma function to prove (i) ∫_0 ^(π/4) sin^4 x 2x dx = ((3𝛑−4)/(192)). (ii) ∫_0 ^(π/6) cos^4 3𝛉 sin^2 6θ = ((5π)/(192)).

$$\:\boldsymbol{\mathrm{U}}\mathrm{se}\:\mathrm{gamma}\:\mathrm{function}\:\mathrm{to}\:\mathrm{prove} \\ $$$$\:\:\left(\mathrm{i}\right)\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \boldsymbol{\mathrm{sin}}^{\mathrm{4}} \boldsymbol{\mathrm{x}}\:\mathrm{2}\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{dx}}\:=\:\frac{\mathrm{3}\boldsymbol{\pi}−\mathrm{4}}{\mathrm{192}}. \\ $$$$\:\:\left(\mathrm{ii}\right)\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \:\boldsymbol{\mathrm{cos}}^{\mathrm{4}} \mathrm{3}\boldsymbol{\theta}\:\mathrm{sin}^{\mathrm{2}} \mathrm{6}\theta\:=\:\frac{\mathrm{5}\pi}{\mathrm{192}}. \\ $$

Question Number 82531    Answers: 1   Comments: 1

Question Number 82510    Answers: 1   Comments: 1

∫ (√(x+(√x) )) dx = ?

$$\int\:\sqrt{{x}+\sqrt{{x}}\:}\:{dx}\:=\:? \\ $$

Question Number 82450    Answers: 1   Comments: 1

∫_0 ^π (1/(1+(tan(x))^(√2) )) dx

$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{1}}{\mathrm{1}+\left({tan}\left({x}\right)\right)^{\sqrt{\mathrm{2}}} }\:{dx} \\ $$

Question Number 82446    Answers: 0   Comments: 3

show that ∫_0 ^∞ x^(−log(x)) x log(x) dx=e(√π)

$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}^{−{log}\left({x}\right)} \:{x}\:{log}\left({x}\right)\:{dx}={e}\sqrt{\pi} \\ $$

Question Number 82440    Answers: 0   Comments: 1

find ∫ ((x+1)/(x+2))(√((1−x)/(1+x)))dx

$${find}\:\int\:\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}{dx} \\ $$

Question Number 82439    Answers: 0   Comments: 1

calculate I_n =∫_0 ^1 x^n (√(1+x+x^2 ))dx

$${calculate}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 82442    Answers: 0   Comments: 1

1)find ∫ ((√(x^2 −x+1))/(x^2 +3))dx 2)calculate ∫_0 ^1 ((√(x^2 −x+1))/(x^2 +3))dx

$$\left.\mathrm{1}\right){find}\:\int\:\frac{\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$

Question Number 82435    Answers: 0   Comments: 1

calculate ∫_4 ^(+∞) (x^3 /((2x+1)^3 (x−3)^5 ))dx

$${calculate}\:\int_{\mathrm{4}} ^{+\infty} \:\:\:\:\:\frac{{x}^{\mathrm{3}} }{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{3}\right)^{\mathrm{5}} }{dx} \\ $$

Question Number 82434    Answers: 0   Comments: 0

1)decompose inside C(x)and R(x) the fraction F(x)=((2x+1)/((x^2 +1)^3 (x−1)^2 )) 2) find the value of ∫_3 ^(+∞) F(x)dx

$$\left.\mathrm{1}\right){decompose}\:{inside}\:{C}\left({x}\right){and}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{3}} ^{+\infty} {F}\left({x}\right){dx} \\ $$

Question Number 82433    Answers: 0   Comments: 1

1)decompose inside C(x)and R(x) F=(1/((x^2 +x+1)^2 )) 2)calculate ∫_0 ^∞ (dx/((x^2 +x+1)^2 ))

$$\left.\mathrm{1}\right){decompose}\:{inside}\:{C}\left({x}\right){and}\:{R}\left({x}\right)\:{F}=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 82402    Answers: 0   Comments: 0

Question Number 82391    Answers: 0   Comments: 1

∫ sin x cos (sin x) dx ?

$$\int\:\mathrm{sin}\:{x}\:\mathrm{cos}\:\left(\mathrm{sin}\:{x}\right)\:{dx}\:? \\ $$

Question Number 82330    Answers: 0   Comments: 4

Question Number 82286    Answers: 1   Comments: 3

1) find a and b wich verify ∫_0 ^π (at^2 +bt)cos(nx) =(1/n^2 ) 2) find the value of Σ_(n=1) ^∞ (1/n^2 )

$$\left.\mathrm{1}\right)\:{find}\:{a}\:{and}\:{b}\:{wich}\:{verify}\:\:\int_{\mathrm{0}} ^{\pi} \left({at}^{\mathrm{2}} \:+{bt}\right){cos}\left({nx}\right)\:=\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$

Question Number 82283    Answers: 1   Comments: 2

∫x^3 (√(x^3 +1)) dx

$$\int{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx} \\ $$

Question Number 82244    Answers: 1   Comments: 2

find the function of f when this function continue at interval [−∞,0] ∫_(−x^2 ) ^0 f(t) dt=(d/dx)[x(1−sin(πx)]

$${find}\:{the}\:{function}\:{of}\:{f}\:{when}\:{this}\:\: \\ $$$${function}\:{continue}\:{at}\:{interval}\:\left[−\infty,\mathrm{0}\right] \\ $$$$\int_{−{x}^{\mathrm{2}} } ^{\mathrm{0}} {f}\left({t}\right)\:{dt}=\frac{{d}}{{dx}}\left[{x}\left(\mathrm{1}−{sin}\left(\pi{x}\right)\right]\right. \\ $$

Question Number 82232    Answers: 1   Comments: 1

Question Number 82223    Answers: 0   Comments: 1

given f(x) = f(x+(π/6)) , ∀x∈ R if ∫_0 ^(π/6) f(x) dx = T then ∫_π ^((7π)/3) f(x+π) dx = ?

$${given}\:{f}\left({x}\right)\:=\:{f}\left({x}+\frac{\pi}{\mathrm{6}}\right)\:,\:\forall{x}\in\:\mathbb{R} \\ $$$${if}\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{6}}} {\int}}\:{f}\left({x}\right)\:{dx}\:=\:{T}\: \\ $$$${then}\:\underset{\pi} {\overset{\frac{\mathrm{7}\pi}{\mathrm{3}}} {\int}}\:{f}\left({x}+\pi\right)\:{dx}\:=\:? \\ $$

Question Number 82185    Answers: 1   Comments: 2

∫ (dx/(sec x + csc x)) = ?

$$\int\:\frac{{dx}}{\mathrm{sec}\:{x}\:+\:{csc}\:{x}}\:=\:?\: \\ $$

Question Number 82174    Answers: 1   Comments: 1

∫_0 ^π x ln(sin x) dx = ?

$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\:{x}\:{ln}\left(\mathrm{sin}\:{x}\right)\:{dx}\:=\:?\: \\ $$

Question Number 82139    Answers: 1   Comments: 0

∫ ((√(x^4 +x^(−4) +2))/x^3 ) dx

$$\int\:\:\frac{\sqrt{{x}^{\mathrm{4}} +{x}^{−\mathrm{4}} +\mathrm{2}}}{{x}^{\mathrm{3}} }\:{dx}\: \\ $$

  Pg 196      Pg 197      Pg 198      Pg 199      Pg 200      Pg 201      Pg 202      Pg 203      Pg 204      Pg 205   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com