let f∈L^1 (R)
let u_n = ∫_a ^b f(t)sin(nt)dt , v_n =∫_a ^b ((f(t))/t)sin(nt)
1)Prove that lim_(n→∞) u_n =0
2)Deduce in term of a,b,f(0) the value of lim_(n→∞) v_n
I) For witch value of α the integral
C=∫_0 ^( ∞) ((1/(√(1+2x^2 )))−(1/(x+1)))dx conveege ?
And in this case calculate α.
II) Let Δ={(x; y)/ ∣x∣+∣y∣≤2}
a) Calculate I_1 = ∫∫_Δ dxdy and ∫∫_Δ ((dxdy)/((∣x∣+∣y∣)^2 +4))