Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 201

Question Number 82330    Answers: 0   Comments: 4

Question Number 82286    Answers: 1   Comments: 3

1) find a and b wich verify ∫_0 ^π (at^2 +bt)cos(nx) =(1/n^2 ) 2) find the value of Σ_(n=1) ^∞ (1/n^2 )

$$\left.\mathrm{1}\right)\:{find}\:{a}\:{and}\:{b}\:{wich}\:{verify}\:\:\int_{\mathrm{0}} ^{\pi} \left({at}^{\mathrm{2}} \:+{bt}\right){cos}\left({nx}\right)\:=\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$

Question Number 82283    Answers: 1   Comments: 2

∫x^3 (√(x^3 +1)) dx

$$\int{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx} \\ $$

Question Number 82244    Answers: 1   Comments: 2

find the function of f when this function continue at interval [−∞,0] ∫_(−x^2 ) ^0 f(t) dt=(d/dx)[x(1−sin(πx)]

$${find}\:{the}\:{function}\:{of}\:{f}\:{when}\:{this}\:\: \\ $$$${function}\:{continue}\:{at}\:{interval}\:\left[−\infty,\mathrm{0}\right] \\ $$$$\int_{−{x}^{\mathrm{2}} } ^{\mathrm{0}} {f}\left({t}\right)\:{dt}=\frac{{d}}{{dx}}\left[{x}\left(\mathrm{1}−{sin}\left(\pi{x}\right)\right]\right. \\ $$

Question Number 82232    Answers: 1   Comments: 1

Question Number 82223    Answers: 0   Comments: 1

given f(x) = f(x+(π/6)) , ∀x∈ R if ∫_0 ^(π/6) f(x) dx = T then ∫_π ^((7π)/3) f(x+π) dx = ?

$${given}\:{f}\left({x}\right)\:=\:{f}\left({x}+\frac{\pi}{\mathrm{6}}\right)\:,\:\forall{x}\in\:\mathbb{R} \\ $$$${if}\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{6}}} {\int}}\:{f}\left({x}\right)\:{dx}\:=\:{T}\: \\ $$$${then}\:\underset{\pi} {\overset{\frac{\mathrm{7}\pi}{\mathrm{3}}} {\int}}\:{f}\left({x}+\pi\right)\:{dx}\:=\:? \\ $$

Question Number 82185    Answers: 1   Comments: 2

∫ (dx/(sec x + csc x)) = ?

$$\int\:\frac{{dx}}{\mathrm{sec}\:{x}\:+\:{csc}\:{x}}\:=\:?\: \\ $$

Question Number 82174    Answers: 1   Comments: 1

∫_0 ^π x ln(sin x) dx = ?

$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\:{x}\:{ln}\left(\mathrm{sin}\:{x}\right)\:{dx}\:=\:?\: \\ $$

Question Number 82139    Answers: 1   Comments: 0

∫ ((√(x^4 +x^(−4) +2))/x^3 ) dx

$$\int\:\:\frac{\sqrt{{x}^{\mathrm{4}} +{x}^{−\mathrm{4}} +\mathrm{2}}}{{x}^{\mathrm{3}} }\:{dx}\: \\ $$

Question Number 82022    Answers: 0   Comments: 0

Question Number 82020    Answers: 0   Comments: 2

Question Number 81996    Answers: 0   Comments: 0

calculate I_n =∫∫_([(1/n),n[) e^(−x^2 −3y^2 ) dxdy and find lim_(n→+∞) I_n conclude that ∫_0 ^∞ e^(−x^2 ) dx=((√π)/2)

$${calculate}\:{I}_{{n}} =\int\int_{\left[\frac{\mathrm{1}}{{n}},{n}\left[\right.\right.} \:\:{e}^{−{x}^{\mathrm{2}} −\mathrm{3}{y}^{\mathrm{2}} } {dxdy} \\ $$$${and}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:{I}_{{n}} \\ $$$${conclude}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$

Question Number 81994    Answers: 0   Comments: 0

calculate ∫∫_W (x+y)e^(x−y) dxdy with W is the triangle limited by o,A(1,0)and B(0,1)

$${calculate}\:\int\int_{{W}} \left({x}+{y}\right){e}^{{x}−{y}} {dxdy} \\ $$$${with}\:{W}\:{is}\:{the}\:{triangle}\:{limited}\:{by} \\ $$$${o},{A}\left(\mathrm{1},\mathrm{0}\right){and}\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$

Question Number 81993    Answers: 0   Comments: 0

calculate ∫∫_D ln(1+x+y)dxdy with D is the triangle limited by points 0,A(1,0) and B(0,1)

$${calculate}\:\int\int_{{D}} {ln}\left(\mathrm{1}+{x}+{y}\right){dxdy} \\ $$$${with}\:{D}\:{is}\:{the}\:{triangle}\:{limited}\:{by} \\ $$$${points}\:\mathrm{0},{A}\left(\mathrm{1},\mathrm{0}\right)\:{and}\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$

Question Number 81921    Answers: 1   Comments: 0

Question Number 81889    Answers: 1   Comments: 0

Question Number 81888    Answers: 1   Comments: 1

Question Number 81801    Answers: 1   Comments: 1

Question Number 81739    Answers: 2   Comments: 1

∫(dx/(cos^3 x−sin^3 x))

$$\int\frac{{dx}}{{cos}^{\mathrm{3}} {x}−{sin}^{\mathrm{3}} {x}} \\ $$

Question Number 81719    Answers: 0   Comments: 1

1) find ∫ (dx/((x+2)^5 (x−3)^9 )) 2) calculate ∫_4 ^(+∞) (dx/((x+2)^5 (x−3)^9 ))

$$\left.\mathrm{1}\right)\:{find}\:\int\:\:\:\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{5}} \left({x}−\mathrm{3}\right)^{\mathrm{9}} } \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{4}} ^{+\infty} \:\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{5}} \left({x}−\mathrm{3}\right)^{\mathrm{9}} } \\ $$

Question Number 81636    Answers: 0   Comments: 4

∫ ((x(tan^(−1) (x))^2 )/((1+x^2 )^(3/2) )) dx =

$$\int\:\frac{{x}\left(\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\right)^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:{dx}\:=\: \\ $$

Question Number 81591    Answers: 0   Comments: 6

if g(−2)=−5 and g′(x)= (x^2 /(cos^2 (x)+1)) find g(4)

$$\mathrm{if}\:\mathrm{g}\left(−\mathrm{2}\right)=−\mathrm{5}\:\mathrm{and}\: \\ $$$$\mathrm{g}'\left(\mathrm{x}\right)=\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{1}} \\ $$$$\mathrm{find}\:\mathrm{g}\left(\mathrm{4}\right)\: \\ $$

Question Number 81549    Answers: 0   Comments: 5

∫_0 ^4 ⌊x⌋^2 dx = ∫_0 ^4 ⌊x^2 ⌋dx=

$$\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\lfloor\mathrm{x}\rfloor^{\mathrm{2}} \:\mathrm{dx}\:=\: \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\lfloor\mathrm{x}^{\mathrm{2}} \rfloor\mathrm{dx}= \\ $$

Question Number 81482    Answers: 1   Comments: 1

Evaluate ∫_(−∞) ^∞ (dx/(x^2 +4x+13)).

$${Evaluate}\:\:\int_{−\infty} ^{\infty} \frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{13}}. \\ $$

Question Number 81433    Answers: 1   Comments: 0

calculate ∫_2 ^(+∞) ((2x+3)/((x−1)^3 (x^2 +x+1)^2 ))dx

$${calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{2}{x}+\mathrm{3}}{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 81432    Answers: 1   Comments: 1

find ∫ (dx/((x+1)^3 (x^2 +3)^2 ))

$${find}\:\:\int\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} } \\ $$

  Pg 196      Pg 197      Pg 198      Pg 199      Pg 200      Pg 201      Pg 202      Pg 203      Pg 204      Pg 205   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com