Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 201
Question Number 82330 Answers: 0 Comments: 4
Question Number 82286 Answers: 1 Comments: 3
$$\left.\mathrm{1}\right)\:{find}\:{a}\:{and}\:{b}\:{wich}\:{verify}\:\:\int_{\mathrm{0}} ^{\pi} \left({at}^{\mathrm{2}} \:+{bt}\right){cos}\left({nx}\right)\:=\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$
Question Number 82283 Answers: 1 Comments: 2
$$\int{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx} \\ $$
Question Number 82244 Answers: 1 Comments: 2
$${find}\:{the}\:{function}\:{of}\:{f}\:{when}\:{this}\:\: \\ $$$${function}\:{continue}\:{at}\:{interval}\:\left[−\infty,\mathrm{0}\right] \\ $$$$\int_{−{x}^{\mathrm{2}} } ^{\mathrm{0}} {f}\left({t}\right)\:{dt}=\frac{{d}}{{dx}}\left[{x}\left(\mathrm{1}−{sin}\left(\pi{x}\right)\right]\right. \\ $$
Question Number 82232 Answers: 1 Comments: 1
Question Number 82223 Answers: 0 Comments: 1
$${given}\:{f}\left({x}\right)\:=\:{f}\left({x}+\frac{\pi}{\mathrm{6}}\right)\:,\:\forall{x}\in\:\mathbb{R} \\ $$$${if}\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{6}}} {\int}}\:{f}\left({x}\right)\:{dx}\:=\:{T}\: \\ $$$${then}\:\underset{\pi} {\overset{\frac{\mathrm{7}\pi}{\mathrm{3}}} {\int}}\:{f}\left({x}+\pi\right)\:{dx}\:=\:? \\ $$
Question Number 82185 Answers: 1 Comments: 2
$$\int\:\frac{{dx}}{\mathrm{sec}\:{x}\:+\:{csc}\:{x}}\:=\:?\: \\ $$
Question Number 82174 Answers: 1 Comments: 1
$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\:{x}\:{ln}\left(\mathrm{sin}\:{x}\right)\:{dx}\:=\:?\: \\ $$
Question Number 82139 Answers: 1 Comments: 0
$$\int\:\:\frac{\sqrt{{x}^{\mathrm{4}} +{x}^{−\mathrm{4}} +\mathrm{2}}}{{x}^{\mathrm{3}} }\:{dx}\: \\ $$
Question Number 82022 Answers: 0 Comments: 0
Question Number 82020 Answers: 0 Comments: 2
Question Number 81996 Answers: 0 Comments: 0
$${calculate}\:{I}_{{n}} =\int\int_{\left[\frac{\mathrm{1}}{{n}},{n}\left[\right.\right.} \:\:{e}^{−{x}^{\mathrm{2}} −\mathrm{3}{y}^{\mathrm{2}} } {dxdy} \\ $$$${and}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:{I}_{{n}} \\ $$$${conclude}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$
Question Number 81994 Answers: 0 Comments: 0
$${calculate}\:\int\int_{{W}} \left({x}+{y}\right){e}^{{x}−{y}} {dxdy} \\ $$$${with}\:{W}\:{is}\:{the}\:{triangle}\:{limited}\:{by} \\ $$$${o},{A}\left(\mathrm{1},\mathrm{0}\right){and}\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$
Question Number 81993 Answers: 0 Comments: 0
$${calculate}\:\int\int_{{D}} {ln}\left(\mathrm{1}+{x}+{y}\right){dxdy} \\ $$$${with}\:{D}\:{is}\:{the}\:{triangle}\:{limited}\:{by} \\ $$$${points}\:\mathrm{0},{A}\left(\mathrm{1},\mathrm{0}\right)\:{and}\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$
Question Number 81921 Answers: 1 Comments: 0
Question Number 81889 Answers: 1 Comments: 0
Question Number 81888 Answers: 1 Comments: 1
Question Number 81801 Answers: 1 Comments: 1
Question Number 81739 Answers: 2 Comments: 1
$$\int\frac{{dx}}{{cos}^{\mathrm{3}} {x}−{sin}^{\mathrm{3}} {x}} \\ $$
Question Number 81719 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{find}\:\int\:\:\:\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{5}} \left({x}−\mathrm{3}\right)^{\mathrm{9}} } \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{4}} ^{+\infty} \:\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{5}} \left({x}−\mathrm{3}\right)^{\mathrm{9}} } \\ $$
Question Number 81636 Answers: 0 Comments: 4
$$\int\:\frac{{x}\left(\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\right)^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:{dx}\:=\: \\ $$
Question Number 81591 Answers: 0 Comments: 6
$$\mathrm{if}\:\mathrm{g}\left(−\mathrm{2}\right)=−\mathrm{5}\:\mathrm{and}\: \\ $$$$\mathrm{g}'\left(\mathrm{x}\right)=\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{1}} \\ $$$$\mathrm{find}\:\mathrm{g}\left(\mathrm{4}\right)\: \\ $$
Question Number 81549 Answers: 0 Comments: 5
$$\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\lfloor\mathrm{x}\rfloor^{\mathrm{2}} \:\mathrm{dx}\:=\: \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\lfloor\mathrm{x}^{\mathrm{2}} \rfloor\mathrm{dx}= \\ $$
Question Number 81482 Answers: 1 Comments: 1
$${Evaluate}\:\:\int_{−\infty} ^{\infty} \frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{13}}. \\ $$
Question Number 81433 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{2}{x}+\mathrm{3}}{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 81432 Answers: 1 Comments: 1
$${find}\:\:\int\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} } \\ $$
Pg 196 Pg 197 Pg 198 Pg 199 Pg 200 Pg 201 Pg 202 Pg 203 Pg 204 Pg 205
Terms of Service
Privacy Policy
Contact: info@tinkutara.com