Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 20
Question Number 195846 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\begin{cases}{\:\:\:\Omega_{\mathrm{1}} \:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{x}^{\:\mathrm{2}} }{{sin}^{\:\mathrm{2}} \left({x}\right)}\:{dx}\:}\\{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\frac{\Omega_{\mathrm{1}} }{\Omega_{\:\mathrm{2}} }\:=\:?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\\{\:\:\Omega_{\:\mathrm{2}} =\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{x}}{{tan}\left({x}\right)}\:{dx}}\end{cases} \\ $$$$ \\ $$
Question Number 195803 Answers: 0 Comments: 0
$$\int\frac{\sqrt{{x}}{dx}}{\:\sqrt{−\mathrm{1}+\sqrt{\mathrm{2}−\left({x}+\mathrm{1}\right)^{\mathrm{2}} }}} \\ $$
Question Number 195468 Answers: 1 Comments: 0
$$\int\frac{{x}^{\mathrm{5}} +{x}^{\mathrm{2}} }{\left({x}^{\mathrm{6}} +\mathrm{2}{x}^{\mathrm{3}} \right)^{\mathrm{7}} }{dx} \\ $$
Question Number 195416 Answers: 1 Comments: 0
Question Number 200299 Answers: 1 Comments: 0
Question Number 195224 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\int_{\mathrm{1}} ^{\mathrm{e}} \mathrm{0}\:{dx}\:=\:?? \\ $$
Question Number 195126 Answers: 1 Comments: 0
$$\mathrm{Soit}\:{f}_{{n}} \left({x}\right)=\mathrm{2}^{{n}+\mathrm{1}} \left[\frac{\frac{\mathrm{1}}{\mathrm{2}^{{n}} }{cotan}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)−{cotanx}}{{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}\right] \\ $$$${Calculer}\:\underset{{x}\rightarrow\mathrm{0}} {{lim}f}_{{n}} \left({x}\right)\:{et}\:\underset{{n}\rightarrow+\infty} {{lim}}\:\frac{{f}_{{n}} \left({x}\right)}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{2}} } \\ $$
Question Number 195082 Answers: 0 Comments: 0
Question Number 194963 Answers: 2 Comments: 0
Question Number 194975 Answers: 0 Comments: 6
$$\int\frac{\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{5}} +\mathrm{1}}\boldsymbol{{dx}} \\ $$
Question Number 194930 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{−{x}} {dx}=? \\ $$
Question Number 194850 Answers: 0 Comments: 0
Question Number 194785 Answers: 0 Comments: 0
$$\int\int\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:{dxdy}\:\left({D}={x}^{\mathrm{4}} +{y}^{\mathrm{4}} \leqslant\mathrm{1}\right) \\ $$
Question Number 194759 Answers: 1 Comments: 1
$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\left(\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\right)\:\mathrm{dxdy}\: \\ $$
Question Number 194591 Answers: 0 Comments: 0
$$\:\:\:\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\:\underset{\mathrm{2x}^{\mathrm{2}} } {\overset{\mathrm{8}} {\int}}\:\:\underset{−\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{y}−\mathrm{x}^{\mathrm{2}} }} {\overset{\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{y}−\mathrm{x}^{\mathrm{2}} }} {\int}}\:\left(\sqrt{\mathrm{3x}^{\mathrm{2}} +\mathrm{3z}^{\mathrm{2}} }\:\right)\mathrm{dzdydx} \\ $$
Question Number 194548 Answers: 2 Comments: 1
Question Number 194515 Answers: 1 Comments: 0
$$\mid\int{f}\left({x}\right){dx}\mid=\int\mid{f}\left({x}\right)\mid{dx} \\ $$
Question Number 194456 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\cancel{ } \\ $$
Question Number 194412 Answers: 1 Comments: 0
Question Number 194388 Answers: 0 Comments: 0
$$\int\frac{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\mathrm{sin}\:{x}+\mathrm{4cos}\:{x}}{\mathrm{2}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:{dx} \\ $$
Question Number 193982 Answers: 3 Comments: 0
$$\:\:\:\:\:\int\:\frac{\mathrm{6x}^{\mathrm{3}} +\mathrm{9x}^{\mathrm{2}} +\mathrm{15x}+\mathrm{6}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}}\:\mathrm{dx}\:=? \\ $$
Question Number 193852 Answers: 3 Comments: 0
Question Number 193538 Answers: 2 Comments: 0
$$\:\:\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{6}} +\mathrm{1}}\:=? \\ $$
Question Number 193526 Answers: 2 Comments: 0
Question Number 193512 Answers: 1 Comments: 0
Question Number 193439 Answers: 1 Comments: 2
$$\underset{\:\:\mathrm{0}} {\int}^{\pi/\mathrm{2}} \frac{\sqrt[{\mathrm{3}}]{{tanx}}}{\left({sinx}+{cosx}\right)^{\mathrm{2}} }{dx} \\ $$
Pg 15 Pg 16 Pg 17 Pg 18 Pg 19 Pg 20 Pg 21 Pg 22 Pg 23 Pg 24
Terms of Service
Privacy Policy
Contact: info@tinkutara.com