calculate f(a)=∫_0 ^1 (√(x^2 +ax+1))dx and g(a)=∫_0 ^1 ((xdx)/(√(x^2 +ax+1)))
with ∣a∣<2
2)find the value of ∫_0 ^1 (√(x^2 +(√2)x+1))dx and ∫_0 ^1 ((xdx)/(√(x^2 +(√2)x+1)))
Evaluate the integral :
∫_( R) ∫(3x^2 +14xy+8y^2 )dxdy for the region
R in the 1st quadrant bounded by the
lines y=((−3)/2)x+1,y=((−3)/2)x+3,y=−(1/4)x
and y=−(1/4)x+1 .