Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 194
Question Number 85360 Answers: 1 Comments: 0
$$\int\left(\mathrm{e}^{\left(\mathrm{1}−\mathrm{x}\right)×\mathrm{e}^{\mathrm{x}} } ×\mathrm{e}^{\int\mathrm{xe}^{\mathrm{x}} \mathrm{dx}} \right)\mathrm{dx} \\ $$
Question Number 85355 Answers: 1 Comments: 4
Question Number 85374 Answers: 0 Comments: 2
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{7}} +{x}^{\mathrm{3}} +\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{1}}\:{dx}\: \\ $$
Question Number 85323 Answers: 1 Comments: 0
$$\int\frac{\mathrm{z}−\mathrm{3}}{\mathrm{5z}−\mathrm{10}}\mathrm{dz} \\ $$
Question Number 85321 Answers: 0 Comments: 0
Question Number 85319 Answers: 1 Comments: 0
$$\int\frac{\mathrm{2}+\mathrm{u}}{−\mathrm{u}^{\mathrm{2}} −\mathrm{u}}\mathrm{du} \\ $$
Question Number 85260 Answers: 1 Comments: 1
$$\mathrm{Evaluate}\:\mathrm{using}\:\mathrm{cauchy}'\mathrm{s}\:\mathrm{integral}\: \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\mathrm{c}} \:\frac{\mathrm{e}^{\mathrm{i}\pi} }{\left(\mathrm{z}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} \left(\mathrm{z}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dz} \\ $$$$\mathrm{where}\:\mathrm{c}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{with}\:\mid\mathrm{z}−\mathrm{i}\mid=\mathrm{3}.\mathrm{5} \\ $$$$ \\ $$$$\mathrm{help}\:\mathrm{please} \\ $$
Question Number 85256 Answers: 0 Comments: 3
$$\int\underset{\mathrm{0}} {\overset{\:\mathrm{1}} {\:}}\:\frac{\mathrm{sin}\:\left(\mathrm{ln}\:\mathrm{x}\right)}{\mathrm{ln}\:\left(\mathrm{x}\right)}\:\mathrm{dx}\: \\ $$
Question Number 85254 Answers: 0 Comments: 0
Question Number 85236 Answers: 1 Comments: 1
$$\mathrm{find}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{if}\: \\ $$$$\mathrm{f}\:'\left(\mathrm{x}\right)\:+\:\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \right)\:=\:\mathrm{2x}+\mathrm{1} \\ $$
Question Number 85191 Answers: 2 Comments: 0
$$\int\frac{\mathrm{z}+\mathrm{2}}{\mathrm{z}} \\ $$
Question Number 85167 Answers: 0 Comments: 0
$${let}\:\varphi\left({x}\right)=\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)\:\:{find}\:\int_{\frac{\mathrm{1}}{\mathrm{3}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {ln}\left(\varphi\left({x}\right)\right){dx} \\ $$
Question Number 85166 Answers: 1 Comments: 3
$${find}\:\int\:\:\left({x}^{\mathrm{2}} −\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$
Question Number 85162 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right){find}\:\int\:{ln}\left(\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$
Question Number 85160 Answers: 1 Comments: 2
$$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+{a}}\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+{a}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{find}\:{value}\:{of}\:{integrals}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}}\:,\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\mathrm{2}{x}^{\mathrm{4}} \:+\mathrm{8}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\mathrm{2}{x}^{\mathrm{4}} +\mathrm{8}\right)^{\mathrm{2}} } \\ $$
Question Number 85158 Answers: 0 Comments: 0
$${calculate}\:{U}_{{n}} =\:\int_{−\frac{\mathrm{1}}{{n}}} ^{\frac{\mathrm{1}}{{n}}} \:{x}^{\mathrm{2}} \sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}{dx}\:\:\:\left({n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$
Question Number 85148 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}+{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{3}} +{x}^{\mathrm{7}} }\:{dx} \\ $$
Question Number 85097 Answers: 1 Comments: 0
$$\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\left(\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{8} \\ $$$$\mathrm{find}\:\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\:=\:? \\ $$
Question Number 85059 Answers: 1 Comments: 0
Question Number 85009 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{n}} }{{sh}\left({x}\right)}{dx}\:{with}\:{n}\:{integr}\:{natural} \\ $$
Question Number 84958 Answers: 0 Comments: 0
Question Number 84957 Answers: 0 Comments: 1
$$\int\:\left(\mathrm{2}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} \:\mathrm{dx}\:=\: \\ $$
Question Number 84956 Answers: 1 Comments: 3
$${show}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} {cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)+\mathrm{1}}\:{dx}=\frac{\pi}{\mathrm{2}\phi} \\ $$
Question Number 84942 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{{x}} {sinh}\left({x}−{t}\right)\:{cosh}\left({t}\right)\:{dt} \\ $$
Question Number 84894 Answers: 0 Comments: 1
Question Number 84879 Answers: 2 Comments: 1
$$\mathrm{e}^{\int\frac{\mathrm{2dx}}{\mathrm{xlnx}}} \\ $$
Pg 189 Pg 190 Pg 191 Pg 192 Pg 193 Pg 194 Pg 195 Pg 196 Pg 197 Pg 198
Terms of Service
Privacy Policy
Contact: info@tinkutara.com