Quation posted Times ago
i can′t find it .after Somme Try i got close Fofme
∫_0 ^π sin(x^2 )dx=(π^3 /3) _1 F_2 ((3/4);(3/2);(7/4),−(π^4 /4))?
sin(x)=Σ_(k≥0) (((−1)^k x^(2k+1) )/((2k+1)!))
⇒sin(x^2 )=Σ_(k≥0) (((−1)^k x^(4k+2) )/((2k+1)!))
∫_0 ^π sin(x^2 )dx=Σ_(k≥0) (((−1)^k )/((2k+1)!))∫_0 ^π x^(4k+2) dx
=Σ_(k≥0) (((−1)^k π^(4k+3) )/((2k+1)!(4k+3)))
=(π^3 /3)Σ_(k≥0) ((3(−1)^k π^(4k) )/((2k+1)!(4k+3)))
(2k+1)!=k!.Π_(j=1) ^(k+1) (k+j)=k!.2^k .3....(2k+1)
=(π^3 /3).Σ_(k≥0) ((3(−1)^k π^(4k) )/(k!.2^k .3....(2k+1)(4k+3)))
=(π^3 /3)Σ_(k≥0) ((2^k .3)/(3...(2k+1).(4k+3))).(((−π^4 )/4))^k .(1/(k!))
=(π^3 /3).Σ_(k≥0) ((2^k .3.....(4k−1))/(3.....(2k+1).(7.....(4k−1)(4k+3))).(((−π^4 )/4))^k .(1/(k!))
=(π^3 /3).Σ_(k≥0) (((1/4^k ).(3)...(4k−1))/((1/2^k ).(3)...(2k+1).(1/4^k )(7)...(4k+3))).(−(π^4 /4))^k .(1/(k!))
=(π^3 /3)Σ_(k≥0) ((((3/4))....((3/4)+k−1))/(((3/2))....((3/2)+k−1).((7/4))....((7/4)+k−1))).(((−π^4 )/4))^k .(1/(k!))
=(π^3 /3) _1 F_2 ((3/4);(3/2);(7/4);−(π^4 /4))
|