Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 194

Question Number 85789    Answers: 1   Comments: 0

∫(ln x)^2 dx =

$$\int\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} \:{dx}\:= \\ $$

Question Number 85781    Answers: 1   Comments: 2

∫_0 ^1 (ln (1/x))^(−3/2) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{ln}\:\frac{\mathrm{1}}{{x}}\right)^{−\mathrm{3}/\mathrm{2}} \:{dx} \\ $$

Question Number 85776    Answers: 1   Comments: 0

Question Number 85775    Answers: 0   Comments: 0

Question Number 85760    Answers: 0   Comments: 0

∫(([cos^(−1) (x){(√(1−x^2 ))}]^(−1) )/(log{((sin(2x(√(1−x^2 ))))/π)})) dx

$$\int\frac{\left[{cos}^{−\mathrm{1}} \left({x}\right)\left\{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right\}\right]^{−\mathrm{1}} }{{log}\left\{\frac{{sin}\left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)}{\pi}\right\}}\:{dx} \\ $$

Question Number 85721    Answers: 1   Comments: 0

show that ∫_0 ^∞ ((e^(−x) ln(x))/(√x))dx=−(√π)(γ+ln(4))

$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}} {ln}\left({x}\right)}{\sqrt{{x}}}{dx}=−\sqrt{\pi}\left(\gamma+{ln}\left(\mathrm{4}\right)\right) \\ $$

Question Number 85718    Answers: 1   Comments: 0

∫((sin(x)−cos(3x))/(sin(x)−cos(2x)))dx

$$\int\frac{{sin}\left({x}\right)−{cos}\left(\mathrm{3}{x}\right)}{{sin}\left({x}\right)−{cos}\left(\mathrm{2}{x}\right)}{dx} \\ $$

Question Number 85717    Answers: 1   Comments: 0

∫_0 ^2 x^4 (√(1−x^2 )) dx ∫_0 ^1 x^(10) (1−x^n )dx

$$\int_{\mathrm{0}} ^{\mathrm{2}} {x}^{\mathrm{4}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{10}} \left(\mathrm{1}−{x}^{{n}} \right){dx} \\ $$$$ \\ $$

Question Number 85711    Answers: 0   Comments: 2

∫_(−4) ^2 ((2x + 1)/((x^2 + x + 1)^(3/2) )) dx

$$\:\underset{−\mathrm{4}} {\overset{\mathrm{2}} {\int}}\:\frac{\mathrm{2}{x}\:+\:\mathrm{1}}{\left({x}^{\mathrm{2}} +\:{x}\:+\:\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}} }\:{dx} \\ $$

Question Number 85701    Answers: 1   Comments: 3

∫ ((√(3x−1))/(√(2x+1))) dx

$$\int\:\frac{\sqrt{\mathrm{3x}−\mathrm{1}}}{\sqrt{\mathrm{2x}+\mathrm{1}}}\:\mathrm{dx}\: \\ $$

Question Number 85677    Answers: 2   Comments: 3

∫_0 ^π ((sin (((21x)/2)))/(sin ((x/2)))) dx

$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{sin}\:\left(\frac{\mathrm{21}{x}}{\mathrm{2}}\right)}{\mathrm{sin}\:\left(\frac{{x}}{\mathrm{2}}\right)}\:{dx}\: \\ $$

Question Number 85669    Answers: 1   Comments: 4

∫ ((√(1+x))/(√(1−x))) dx

$$\int\:\frac{\sqrt{\mathrm{1}+{x}}}{\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$$$ \\ $$

Question Number 85667    Answers: 1   Comments: 0

∫ (dx/(√(1−sin 2x)))

$$\int\:\frac{{dx}}{\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}}\: \\ $$

Question Number 85648    Answers: 2   Comments: 0

∫(((x^3 −4))/((x+1)))dx

$$\int\frac{\left(\mathrm{x}^{\mathrm{3}} −\mathrm{4}\right)}{\left(\mathrm{x}+\mathrm{1}\right)}\mathrm{dx} \\ $$

Question Number 85646    Answers: 0   Comments: 0

show that ∫(1/([x(x−1)(x−2)(x−3)...(x−m)]^2 ))dx= =(1/((m!)^2 ))Σ_(n=0) ^m ( ((m),(n) )^2 /(n−x))+(2/((m!)^2 ))ln∣Π_(n=0) ^m (x−n)^( ((m),(n) )^2 (H_(m−n) −H_n )) ∣+c

$${show}\:{that} \\ $$$$\int\frac{\mathrm{1}}{\left[{x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)...\left({x}−{m}\right)\right]^{\mathrm{2}} }{dx}= \\ $$$$=\frac{\mathrm{1}}{\left({m}!\right)^{\mathrm{2}} }\underset{{n}=\mathrm{0}} {\overset{{m}} {\sum}}\frac{\begin{pmatrix}{{m}}\\{{n}}\end{pmatrix}^{\mathrm{2}} }{{n}−{x}}+\frac{\mathrm{2}}{\left({m}!\right)^{\mathrm{2}} }{ln}\mid\underset{{n}=\mathrm{0}} {\overset{{m}} {\prod}}\left({x}−{n}\right)^{\begin{pmatrix}{{m}}\\{{n}}\end{pmatrix}^{\mathrm{2}} \left({H}_{{m}−{n}} −{H}_{{n}} \right)} \mid+{c} \\ $$

Question Number 85641    Answers: 0   Comments: 2

calculate A_λ =∫_3 ^∞ (dx/((x+λ)^3 (x−2)^4 )) (λ>0)

$${calculate}\:{A}_{\lambda} =\int_{\mathrm{3}} ^{\infty} \:\:\frac{{dx}}{\left({x}+\lambda\right)^{\mathrm{3}} \left({x}−\mathrm{2}\right)^{\mathrm{4}} }\:\:\:\left(\lambda>\mathrm{0}\right) \\ $$

Question Number 85637    Answers: 1   Comments: 2

∫ (dx/(x+(√(x^2 +1))))

$$\int\:\frac{\mathrm{dx}}{\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}}\: \\ $$

Question Number 85603    Answers: 0   Comments: 0

prove the relation ∫_0 ^1 ((li_5 ((x)^(1/5) ))/(x)^(1/5) )dx=(5/4)(((25)/(3072))−((ζ(2))/2^6 )+((ζ(3))/2^4 )−((ζ(4))/2^2 )+ζ(5))

$${prove}\:{the}\:{relation} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{li}_{\mathrm{5}} \left(\sqrt[{\mathrm{5}}]{{x}}\right)}{\sqrt[{\mathrm{5}}]{{x}}}{dx}=\frac{\mathrm{5}}{\mathrm{4}}\left(\frac{\mathrm{25}}{\mathrm{3072}}−\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{2}^{\mathrm{6}} }+\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{2}^{\mathrm{4}} }−\frac{\zeta\left(\mathrm{4}\right)}{\mathrm{2}^{\mathrm{2}} }+\zeta\left(\mathrm{5}\right)\right) \\ $$

Question Number 85592    Answers: 1   Comments: 0

∫(((u+1)^2 )/(u^3 +u))du

$$\int\frac{\left(\mathrm{u}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{u}^{\mathrm{3}} +\mathrm{u}}\mathrm{du} \\ $$

Question Number 85591    Answers: 1   Comments: 0

∫((1+4u)/(−4u^2 +2u+2))du

$$\int\frac{\mathrm{1}+\mathrm{4u}}{−\mathrm{4u}^{\mathrm{2}} +\mathrm{2u}+\mathrm{2}}\mathrm{du} \\ $$$$ \\ $$

Question Number 85590    Answers: 0   Comments: 0

∫((1+4u)/(−4u^2 +2u+2))du

$$\int\frac{\mathrm{1}+\mathrm{4u}}{−\mathrm{4u}^{\mathrm{2}} +\mathrm{2u}+\mathrm{2}}\mathrm{du} \\ $$$$ \\ $$

Question Number 85601    Answers: 0   Comments: 2

∫((4u)/(4u^2 −4u+1))du

$$\int\frac{\mathrm{4u}}{\mathrm{4u}^{\mathrm{2}} −\mathrm{4u}+\mathrm{1}}\mathrm{du} \\ $$

Question Number 85600    Answers: 1   Comments: 3

∫(x^2 /(√(1+x^2 ))) dx

$$\int\frac{{x}^{\mathrm{2}} }{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx} \\ $$

Question Number 85596    Answers: 1   Comments: 1

∫(((√(x+1))−1)/((√(x−1))+1)) dx

$$\int\frac{\sqrt{{x}+\mathrm{1}}−\mathrm{1}}{\sqrt{{x}−\mathrm{1}}+\mathrm{1}}\:{dx} \\ $$

Question Number 85568    Answers: 4   Comments: 2

∫ _0 ^(2π) (dx/((√2)−cos x))

$$\int\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\:}}\:\frac{\mathrm{dx}}{\sqrt{\mathrm{2}}−\mathrm{cos}\:\mathrm{x}} \\ $$

Question Number 85551    Answers: 0   Comments: 1

∫ (dx/(x^2 (x^4 +1)^(3/4) ))

$$\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} } \\ $$

  Pg 189      Pg 190      Pg 191      Pg 192      Pg 193      Pg 194      Pg 195      Pg 196      Pg 197      Pg 198   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com