Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 192
Question Number 81591 Answers: 0 Comments: 6
$$\mathrm{if}\:\mathrm{g}\left(−\mathrm{2}\right)=−\mathrm{5}\:\mathrm{and}\: \\ $$$$\mathrm{g}'\left(\mathrm{x}\right)=\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{1}} \\ $$$$\mathrm{find}\:\mathrm{g}\left(\mathrm{4}\right)\: \\ $$
Question Number 81549 Answers: 0 Comments: 5
$$\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\lfloor\mathrm{x}\rfloor^{\mathrm{2}} \:\mathrm{dx}\:=\: \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\lfloor\mathrm{x}^{\mathrm{2}} \rfloor\mathrm{dx}= \\ $$
Question Number 81482 Answers: 1 Comments: 1
$${Evaluate}\:\:\int_{−\infty} ^{\infty} \frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{13}}. \\ $$
Question Number 81433 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{2}{x}+\mathrm{3}}{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 81432 Answers: 1 Comments: 1
$${find}\:\:\int\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} } \\ $$
Question Number 81427 Answers: 1 Comments: 4
$$\left.\mathrm{1}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{\mathrm{3}} \right){dx} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{{n}} \right){dx}\:{with}\:{n}\geqslant\mathrm{2} \\ $$
Question Number 81400 Answers: 1 Comments: 3
$${Hello}\:\:{Nice}\:{day}\:{im}\:{thinking}\:{of}\:{this}\:{one}\:\:{a}\:{close}\:{forme}? \\ $$$$\int\sqrt{\mathrm{1}+{x}^{{p}} }{dx} \\ $$$${p}\in\mathbb{R}_{+} , \\ $$$${x}\in\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$
Question Number 81340 Answers: 1 Comments: 4
$${Quation}\:\:{posted}\:{Times}\:{ago} \\ $$$${i}\:{can}'{t}\:{find}\:{it}\:.{after}\:{Somme}\:{Try}\:{i}\:{got}\:{close}\:{Fofme} \\ $$$$\int_{\mathrm{0}} ^{\pi} {sin}\left({x}^{\mathrm{2}} \right){dx}=\frac{\pi^{\mathrm{3}} }{\mathrm{3}}\:\:_{\mathrm{1}} {F}_{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}};\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{7}}{\mathrm{4}},−\frac{\pi^{\mathrm{4}} }{\mathrm{4}}\right)? \\ $$$${sin}\left({x}\right)=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} {x}^{\mathrm{2}{k}+\mathrm{1}} }{\left(\mathrm{2}{k}+\mathrm{1}\right)!} \\ $$$$\Rightarrow{sin}\left({x}^{\mathrm{2}} \right)=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} {x}^{\mathrm{4}{k}+\mathrm{2}} }{\left(\mathrm{2}{k}+\mathrm{1}\right)!} \\ $$$$\int_{\mathrm{0}} ^{\pi} {sin}\left({x}^{\mathrm{2}} \right){dx}=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\left(\mathrm{2}{k}+\mathrm{1}\right)!}\int_{\mathrm{0}} ^{\pi} {x}^{\mathrm{4}{k}+\mathrm{2}} {dx} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} \pi^{\mathrm{4}{k}+\mathrm{3}} }{\left(\mathrm{2}{k}+\mathrm{1}\right)!\left(\mathrm{4}{k}+\mathrm{3}\right)} \\ $$$$=\frac{\pi^{\mathrm{3}} }{\mathrm{3}}\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{3}\left(−\mathrm{1}\right)^{{k}} \pi^{\mathrm{4}{k}} }{\left(\mathrm{2}{k}+\mathrm{1}\right)!\left(\mathrm{4}{k}+\mathrm{3}\right)} \\ $$$$\left(\mathrm{2}{k}+\mathrm{1}\right)!={k}!.\underset{{j}=\mathrm{1}} {\overset{{k}+\mathrm{1}} {\prod}}\left({k}+{j}\right)={k}!.\mathrm{2}^{{k}} .\mathrm{3}....\left(\mathrm{2}{k}+\mathrm{1}\right) \\ $$$$=\frac{\pi^{\mathrm{3}} }{\mathrm{3}}.\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{3}\left(−\mathrm{1}\right)^{{k}} \pi^{\mathrm{4}{k}} }{{k}!.\mathrm{2}^{{k}} .\mathrm{3}....\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{4}{k}+\mathrm{3}\right)} \\ $$$$=\frac{\pi^{\mathrm{3}} }{\mathrm{3}}\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{2}^{{k}} .\mathrm{3}}{\mathrm{3}...\left(\mathrm{2}{k}+\mathrm{1}\right).\left(\mathrm{4}{k}+\mathrm{3}\right)}.\left(\frac{−\pi^{\mathrm{4}} }{\mathrm{4}}\right)^{{k}} .\frac{\mathrm{1}}{{k}!} \\ $$$$=\frac{\pi^{\mathrm{3}} }{\mathrm{3}}.\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{2}^{{k}} .\mathrm{3}.....\left(\mathrm{4}{k}−\mathrm{1}\right)}{\mathrm{3}.....\left(\mathrm{2}{k}+\mathrm{1}\right).\left(\mathrm{7}.....\left(\mathrm{4}{k}−\mathrm{1}\right)\left(\mathrm{4}{k}+\mathrm{3}\right)\right.}.\left(\frac{−\pi^{\mathrm{4}} }{\mathrm{4}}\right)^{{k}} .\frac{\mathrm{1}}{{k}!} \\ $$$$=\frac{\pi^{\mathrm{3}} }{\mathrm{3}}.\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\frac{\mathrm{1}}{\mathrm{4}^{{k}} }.\left(\mathrm{3}\right)...\left(\mathrm{4}{k}−\mathrm{1}\right)}{\frac{\mathrm{1}}{\mathrm{2}^{{k}} }.\left(\mathrm{3}\right)...\left(\mathrm{2}{k}+\mathrm{1}\right).\frac{\mathrm{1}}{\mathrm{4}^{{k}} }\left(\mathrm{7}\right)...\left(\mathrm{4}{k}+\mathrm{3}\right)}.\left(−\frac{\pi^{\mathrm{4}} }{\mathrm{4}}\right)^{{k}} .\frac{\mathrm{1}}{{k}!} \\ $$$$=\frac{\pi^{\mathrm{3}} }{\mathrm{3}}\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(\frac{\mathrm{3}}{\mathrm{4}}\right)....\left(\frac{\mathrm{3}}{\mathrm{4}}+{k}−\mathrm{1}\right)}{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)....\left(\frac{\mathrm{3}}{\mathrm{2}}+{k}−\mathrm{1}\right).\left(\frac{\mathrm{7}}{\mathrm{4}}\right)....\left(\frac{\mathrm{7}}{\mathrm{4}}+{k}−\mathrm{1}\right)}.\left(\frac{−\pi^{\mathrm{4}} }{\mathrm{4}}\right)^{{k}} .\frac{\mathrm{1}}{{k}!} \\ $$$$=\frac{\pi^{\mathrm{3}} }{\mathrm{3}}\:\:_{\mathrm{1}} {F}_{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}};\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{7}}{\mathrm{4}};−\frac{\pi^{\mathrm{4}} }{\mathrm{4}}\right) \\ $$$$ \\ $$
Question Number 81336 Answers: 1 Comments: 7
$${decompose}\:{F}\left({x}\right)=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{3}\right)^{\mathrm{7}} } \\ $$$${and}\:{detrmine}\:\:\int\:{F}\left({x}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{2}} ^{+\infty} \:{F}\left({x}\right){dx} \\ $$
Question Number 81313 Answers: 1 Comments: 5
$$\int\frac{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{3}} }{\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{5}} }\:\mathrm{dx} \\ $$
Question Number 81290 Answers: 0 Comments: 3
$$\int_{−\mathrm{1}} ^{\mathrm{1}} {arctan}\left({x}\right){arctan}\left(\frac{{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right){arctan}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right){dx} \\ $$
Question Number 81279 Answers: 0 Comments: 2
$$\int\:\frac{\sqrt{\mathrm{2}{x}+\mathrm{1}}}{\mathrm{3}{x}}\:{dx}\:=\:? \\ $$
Question Number 81165 Answers: 1 Comments: 3
$${let}\:{f}\left({x}\right)=\frac{\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{2}\left({cos}\theta\right){x}\:+\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int_{\mathrm{0}} ^{\infty} \:{f}\left({x}\right){dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:\int_{\mathrm{0}} ^{\infty} \:{f}^{\left({n}\right)} \left({x}\right){dx} \\ $$
Question Number 81100 Answers: 0 Comments: 2
$$\int\:\frac{{x}\:{dx}}{\left(\mathrm{tan}\:{x}+\mathrm{cot}\:{x}\right)^{\mathrm{2}} }\:=\:? \\ $$
Question Number 81043 Answers: 1 Comments: 8
$$\int\:\frac{\mathrm{2}{e}^{\mathrm{2}{x}} −{e}^{{x}} }{\sqrt{\mathrm{3}{e}^{\mathrm{2}{x}} −\mathrm{6}{e}^{{x}} −\mathrm{1}}}\:{dx} \\ $$
Question Number 80977 Answers: 1 Comments: 6
Question Number 80951 Answers: 1 Comments: 3
Question Number 80925 Answers: 0 Comments: 1
$$\int_{−\infty} ^{\infty} \frac{{cos}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:=\frac{\pi}{{e}} \\ $$
Question Number 80924 Answers: 1 Comments: 3
$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\frac{\pi}{\mathrm{5}}−\mathrm{1}} }{\mathrm{1}+{x}^{\mathrm{2}\pi} }\:{dx}\:=\phi\: \\ $$
Question Number 80921 Answers: 0 Comments: 2
$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{xdx}}{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}\:=\:? \\ $$
Question Number 80914 Answers: 0 Comments: 0
$$\left(\mathrm{1}\right) \\ $$$$\mathrm{Integrate}\:\:\mathrm{F}\left(\mathrm{x},\:\mathrm{y}\right)\:\:=\:\:\mathrm{x}^{\mathrm{2}} \:\:\:\mathrm{over}\:\mathrm{the}\:\mathrm{region}\:\mathrm{bounded}\:\mathrm{by}\:\:\:\mathrm{y}\:\:=\:\:\mathrm{x}^{\mathrm{2}} , \\ $$$$\mathrm{x}\:\:=\:\:\mathrm{2}\:\:\mathrm{and}\:\mathrm{x}\:\:=\:\:\mathrm{1} \\ $$$$ \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{Integrate}\:\:\:\:\mathrm{G}\left(\mathrm{x},\:\mathrm{y}\right)\:\:=\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:\:\:\:\mathrm{over}\:\mathrm{the}\:\mathrm{region}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\: \\ $$$$\mathrm{triangle}\:\:\:\:\mathrm{x}\:\:=\:\:\mathrm{y},\:\:\mathrm{y}\:\:=\:\:\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{y}\:\:=\:\:\mathrm{0} \\ $$
Question Number 80882 Answers: 1 Comments: 4
Question Number 80846 Answers: 1 Comments: 4
Question Number 80788 Answers: 0 Comments: 0
Question Number 80770 Answers: 1 Comments: 1
$$\int\mathrm{x}^{\mathrm{2}} +\mathrm{3x}\:\mathrm{dx}=.. \\ $$
Question Number 80764 Answers: 1 Comments: 0
$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}\:{arctanh}\left({e}^{−\alpha{x}} \right){dx}=\frac{\mathrm{7}\zeta\left(\mathrm{3}\right)}{\mathrm{8}\alpha^{\mathrm{2}} } \\ $$
Pg 187 Pg 188 Pg 189 Pg 190 Pg 191 Pg 192 Pg 193 Pg 194 Pg 195 Pg 196
Terms of Service
Privacy Policy
Contact: info@tinkutara.com