Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 192

Question Number 86302    Answers: 1   Comments: 1

∫ (dx/((x^2 +1)(√(x^2 +4)))) =?

$$\int\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}\:=? \\ $$

Question Number 86374    Answers: 0   Comments: 1

calculate bycomplex method ∫_1 ^(+∞) (dx/(1+x^2 ))

$${calculate}\:{bycomplex}\:{method}\:\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$

Question Number 86269    Answers: 0   Comments: 1

∫((sec^2 (x))/((tan(x)−1)^4 (tan(x)−2))) dx

$$\int\frac{{sec}^{\mathrm{2}} \left({x}\right)}{\left({tan}\left({x}\right)−\mathrm{1}\right)^{\mathrm{4}} \left({tan}\left({x}\right)−\mathrm{2}\right)}\:{dx} \\ $$

Question Number 86254    Answers: 1   Comments: 0

∫ (√(x(√(x(√(x(√(x.......)))))))) dx

$$\int\:\sqrt{\mathrm{x}\sqrt{\mathrm{x}\sqrt{\mathrm{x}\sqrt{\mathrm{x}.......}}}}\:\:\:\mathrm{dx} \\ $$

Question Number 86247    Answers: 0   Comments: 3

∫_0 ^8 ∫_0 ^x^(2/3) (√(x^2 +y^2 +1)) dy dx

$$\int_{\mathrm{0}} ^{\mathrm{8}} \int_{\mathrm{0}} ^{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} } \:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}}\:{dy}\:{dx} \\ $$

Question Number 86246    Answers: 1   Comments: 0

∫((x^2 −1)/(x^2 +1)) (1/(√(1 + x^4 ))) dx = ?

$$\int\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}\:+\:{x}^{\mathrm{4}} }}\:{dx}\:=\:? \\ $$

Question Number 86258    Answers: 1   Comments: 3

calculate I=∫_1 ^(+∞) ((x^2 −1)/(x^4 −x^2 +1))dx

$${calculate}\:{I}=\int_{\mathrm{1}} ^{+\infty} \frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$

Question Number 86214    Answers: 0   Comments: 8

Question Number 86167    Answers: 1   Comments: 3

∫_0 ^(π/2) ((arc tan ((√(tan x))))/(tan x)) dx

$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\mathrm{arc}\:\mathrm{tan}\:\left(\sqrt{\mathrm{tan}\:\mathrm{x}}\right)}{\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$

Question Number 86138    Answers: 1   Comments: 1

∫ _(−4) ^8 ((∣x∣)/x) dx = ?

$$\int\underset{−\mathrm{4}} {\overset{\mathrm{8}} {\:}}\:\frac{\mid\mathrm{x}\mid}{\mathrm{x}}\:\mathrm{dx}\:=\:? \\ $$

Question Number 86094    Answers: 1   Comments: 1

2∫(√(x^3 +4)) dx

$$\mathrm{2}\int\sqrt{{x}^{\mathrm{3}} +\mathrm{4}}\:{dx} \\ $$

Question Number 86091    Answers: 1   Comments: 1

∫ ((sin x−cos x)/(√(sin 2x))) dx

$$\int\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}{\sqrt{\mathrm{sin}\:\mathrm{2x}}}\:\mathrm{dx} \\ $$

Question Number 86080    Answers: 1   Comments: 1

∫(dx/(√(5−4x−2x^2 )))

$$\int\frac{{dx}}{\sqrt{\mathrm{5}−\mathrm{4}{x}−\mathrm{2}{x}^{\mathrm{2}} }} \\ $$

Question Number 86039    Answers: 0   Comments: 1

∫((2x^5 −x^3 −1)/(x^3 −4x))dx

$$\int\frac{\mathrm{2}{x}^{\mathrm{5}} −{x}^{\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{3}} −\mathrm{4}{x}}{dx} \\ $$

Question Number 86034    Answers: 2   Comments: 0

∫(dx/(√(×^2 +4)))

$$\int\frac{{dx}}{\sqrt{×^{\mathrm{2}} +\mathrm{4}}} \\ $$

Question Number 86016    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((x^2 −3)/((x^2 +1)^7 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{2}} −\mathrm{3}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{7}} }{dx} \\ $$

Question Number 86015    Answers: 0   Comments: 0

calculate ∫_0 ^(+∞) (dx/((x^2 −x+2)^4 ))

$${calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{2}\right)^{\mathrm{4}} } \\ $$

Question Number 86013    Answers: 0   Comments: 1

calculate ∫_(1+(√2)) ^(+∞) (dx/((x−1)^3 (x+2)^3 ))

$${calculate}\:\:\int_{\mathrm{1}+\sqrt{\mathrm{2}}} ^{+\infty} \:\:\:\:\frac{{dx}}{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{3}} } \\ $$

Question Number 85999    Answers: 0   Comments: 5

∫_0 ^∞ ((sinx^2 )/(1+x^4 ))dx=0.4009 prove that

$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx}=\mathrm{0}.\mathrm{4009} \\ $$$${prove}\:{that} \\ $$

Question Number 85952    Answers: 1   Comments: 0

∫ ((√x)/(2+(x)^(1/(3 )) )) dx

$$\int\:\:\frac{\sqrt{\mathrm{x}}}{\mathrm{2}+\sqrt[{\mathrm{3}\:\:}]{\mathrm{x}}}\:\mathrm{dx}\: \\ $$

Question Number 85914    Answers: 1   Comments: 0

Let I_n =∫_(0 ) ^(π/4) (((1−tan A)/(1+tan A)))^n dA what is the Laplace Transform and the Fourier Transform

$${Let}\:{I}_{{n}} =\overset{\pi/\mathrm{4}} {\int}_{\mathrm{0}\:} \left(\frac{\mathrm{1}−\mathrm{tan}\:{A}}{\mathrm{1}+\mathrm{tan}\:{A}}\right)^{{n}} {dA}\:\:{what}\:{is} \\ $$$${the}\:{Laplace}\:{Transform}\:{and}\:{the} \\ $$$${Fourier}\:{Transform} \\ $$

Question Number 85909    Answers: 2   Comments: 2

∫ sin^(−1) ((√(x/(a+x)))) dx , a > 0

$$\int\:\mathrm{sin}^{−\mathrm{1}} \:\left(\sqrt{\frac{\mathrm{x}}{\mathrm{a}+\mathrm{x}}}\right)\:\mathrm{dx}\:,\:\mathrm{a}\:>\:\mathrm{0} \\ $$

Question Number 85896    Answers: 2   Comments: 4

Question Number 85890    Answers: 0   Comments: 0

Is there a sum for ψ((p/q)) or an integral for any fraction p/q

$${Is}\:{there}\:{a}\:{sum}\:{for}\:\psi\left(\frac{{p}}{{q}}\right)\:{or}\:{an}\:{integral} \\ $$$${for}\:{any}\:{fraction}\:{p}/{q} \\ $$

Question Number 85875    Answers: 1   Comments: 0

∫((1/(7[1−(1/7)e^x ]))) dx

$$\int\left(\frac{\mathrm{1}}{\mathrm{7}\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{7}}\mathrm{e}^{\mathrm{x}} \right]}\right)\:\mathrm{dx} \\ $$

Question Number 85839    Answers: 1   Comments: 1

∫x×(1/(√(x^2 −1)))dx

$$\int\mathrm{x}×\frac{\mathrm{1}}{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\mathrm{dx} \\ $$

  Pg 187      Pg 188      Pg 189      Pg 190      Pg 191      Pg 192      Pg 193      Pg 194      Pg 195      Pg 196   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com