Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 192
Question Number 86611 Answers: 1 Comments: 0
$$\int_{\mathrm{1}} ^{{e}} \frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 86591 Answers: 0 Comments: 0
$$\int_{−\mathrm{1}} ^{\mathrm{1}} \lfloor\:\mid{x}\mid+\sqrt[{\mathrm{3}}]{{x}}\:\rfloor\:{dx} \\ $$
Question Number 86578 Answers: 0 Comments: 2
Question Number 86576 Answers: 0 Comments: 3
$$\int\:\frac{\mathrm{ln}\:\left(\mathrm{1}+\mathrm{arc}\:\mathrm{sin}\:\left(\mathrm{x}^{\mathrm{2}} \right)\right)}{\mathrm{sin}\:\left(\mathrm{x}^{\mathrm{2}} \right)}\:\mathrm{dx}\:? \\ $$
Question Number 86518 Answers: 0 Comments: 1
$$\int\:\:\frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{2x}} −\mathrm{5e}^{\mathrm{x}} } \\ $$
Question Number 86491 Answers: 2 Comments: 1
$$\int\:\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{x}^{\mathrm{4}} +\mathrm{1}}\:\mathrm{dx}\:?\: \\ $$
Question Number 86484 Answers: 2 Comments: 9
$$\int\frac{{x}^{\mathrm{6}} }{\mathrm{1}+{x}^{\mathrm{12}} }{dx} \\ $$
Question Number 86480 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\infty} \left({x}\:{e}^{\mathrm{1}−{x}} \:−\lfloor{x}\rfloor{e}^{\mathrm{1}−\lfloor{x}\rfloor} \right){dx} \\ $$
Question Number 86472 Answers: 1 Comments: 0
Question Number 86447 Answers: 0 Comments: 1
Question Number 86431 Answers: 2 Comments: 0
$$\int\sqrt{{x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:}\:{dx} \\ $$
Question Number 86428 Answers: 0 Comments: 2
$$\int\:\:\frac{\mathrm{dx}}{\mathrm{a}\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{b}\:\mathrm{sin}\:\mathrm{x}}? \\ $$
Question Number 86407 Answers: 1 Comments: 1
Question Number 86405 Answers: 1 Comments: 2
Question Number 86399 Answers: 2 Comments: 3
Question Number 86397 Answers: 2 Comments: 2
$$\int\frac{{dx}}{{sin}^{\mathrm{2}} \left({x}\right)+{tan}^{\mathrm{2}} \left({x}\right)}\:{dx} \\ $$
Question Number 86375 Answers: 1 Comments: 2
$${calculate}\:{by}\:{complex}\:{method}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$
Question Number 86341 Answers: 0 Comments: 0
$${Can}\:{anyone}\:{pls}\:{check}\: \\ $$$${question}\:{no}.\:\mathrm{76808} \\ $$
Question Number 86328 Answers: 1 Comments: 0
$$\int\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}\:{dx} \\ $$
Question Number 86326 Answers: 0 Comments: 0
$${Let}\:{f}\:{a}\:{continue}\:{function}\:{acknowleding} \\ $$$$\alpha\:{as}\:{a}\:{fix}\:{point}\:{on}\:\left[\mathrm{0},\mathrm{1}\right].{F}\:\:{a}\:{function}\:{such}\:{as}\:\frac{{dF}}{{dx}}={f}\left({x}\right) \\ $$$$\forall\:{n}\:,\:\:{u}_{{n}+\mathrm{1}} =\frac{{F}\left({u}_{{n}} \right)−{F}\left(\alpha\right)}{{u}_{{n}} −\alpha}\: \\ $$$${Prove}\:{that}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{u}_{{n}} \:=\alpha \\ $$
Question Number 86324 Answers: 0 Comments: 2
$$\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{1}\:}{\sqrt{\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{x}}}\:\:\:+\:\:\sqrt{\boldsymbol{\mathrm{cos}}\:\boldsymbol{\mathrm{x}}}}\:\boldsymbol{\mathrm{dx}} \\ $$
Question Number 86313 Answers: 2 Comments: 2
$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{dx}}{\sqrt{\mathrm{1}+\mathrm{tan}\:{x}}} \\ $$
Question Number 86302 Answers: 1 Comments: 1
$$\int\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}\:=? \\ $$
Question Number 86374 Answers: 0 Comments: 1
$${calculate}\:{bycomplex}\:{method}\:\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$
Question Number 86269 Answers: 0 Comments: 1
$$\int\frac{{sec}^{\mathrm{2}} \left({x}\right)}{\left({tan}\left({x}\right)−\mathrm{1}\right)^{\mathrm{4}} \left({tan}\left({x}\right)−\mathrm{2}\right)}\:{dx} \\ $$
Question Number 86254 Answers: 1 Comments: 0
$$\int\:\sqrt{\mathrm{x}\sqrt{\mathrm{x}\sqrt{\mathrm{x}\sqrt{\mathrm{x}.......}}}}\:\:\:\mathrm{dx} \\ $$
Pg 187 Pg 188 Pg 189 Pg 190 Pg 191 Pg 192 Pg 193 Pg 194 Pg 195 Pg 196
Terms of Service
Privacy Policy
Contact: info@tinkutara.com