Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 19

Question Number 208900    Answers: 0   Comments: 0

Does anyone know of an intuition behind the integral form of the remainder in Taylor′s theorem?

$${Does}\:{anyone}\:{know}\:{of}\:{an}\:{intuition} \\ $$$${behind}\:{the}\:{integral}\:{form}\:{of}\:{the} \\ $$$${remainder}\:{in}\:{Taylor}'{s}\:{theorem}? \\ $$

Question Number 208871    Answers: 3   Comments: 0

L=∫_0 ^1 (√((4−3x)/(4+5x)))dx

$${L}=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{\mathrm{4}−\mathrm{3}{x}}{\mathrm{4}+\mathrm{5}{x}}}{dx} \\ $$

Question Number 208842    Answers: 1   Comments: 1

does the rule of odd and even functions can be applied with improper integration? I=∫_(−∞) ^∞ xe^(−x^2 ) dx while f(x)= xe^(−x^2 ) is odd then I =0

$${does}\:{the}\:{rule}\:{of}\:{odd}\:{and}\:{even}\:{functions}\: \\ $$$${can}\:{be}\:{applied}\:{with}\:{improper}\:{integration}? \\ $$$${I}=\int_{−\infty} ^{\infty} {xe}^{−{x}^{\mathrm{2}} } {dx}\: \\ $$$${while}\:\:{f}\left({x}\right)=\:{xe}^{−{x}^{\mathrm{2}} } \:{is}\:{odd} \\ $$$${then}\:{I}\:=\mathrm{0} \\ $$

Question Number 208805    Answers: 0   Comments: 3

Integrate: (xdz − zdx) − a^2 (2xzdz − z^2 dx) + 2x^3 = 0

$$\mathrm{Integrate}: \\ $$$$\left(\mathrm{xdz}\:−\:\mathrm{zdx}\right)\:−\:\mathrm{a}^{\mathrm{2}} \left(\mathrm{2xzdz}\:−\:\mathrm{z}^{\mathrm{2}} \mathrm{dx}\right)\:+\:\mathrm{2x}^{\mathrm{3}} \:=\:\mathrm{0} \\ $$

Question Number 208791    Answers: 0   Comments: 1

If ∫ (dx/(x^3 (1 + x^6 )^(2/3) )) = xf(x).(1 + x^6 )^(1/3) + C where C is constant of integration then find f(x).

$$\mathrm{If}\:\int\:\frac{{dx}}{{x}^{\mathrm{3}} \left(\mathrm{1}\:+\:{x}^{\mathrm{6}} \right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=\:{xf}\left({x}\right).\left(\mathrm{1}\:+\:{x}^{\mathrm{6}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:+\:{C}\: \\ $$$$\mathrm{where}\:{C}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{of}\:\mathrm{integration}\:\mathrm{then} \\ $$$$\mathrm{find}\:{f}\left({x}\right). \\ $$

Question Number 208733    Answers: 1   Comments: 0

2∫_(1/3) ^1 ((x(√(−3x^2 +4x−1)))/(7x^2 −4x+1))dx=? Exact solution needed.

$$\mathrm{2}\underset{\frac{\mathrm{1}}{\mathrm{3}}} {\overset{\mathrm{1}} {\int}}\frac{{x}\sqrt{−\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{1}}}{\mathrm{7}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}}{dx}=? \\ $$$$\mathrm{Exact}\:\mathrm{solution}\:\mathrm{needed}. \\ $$

Question Number 208692    Answers: 1   Comments: 0

∫_0 ^(π/2) xln sin x dx=?

$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}{x}\mathrm{ln}\:\mathrm{sin}\:{x}\:{dx}=? \\ $$

Question Number 208661    Answers: 1   Comments: 0

∫_2 ^7 f(x)dx=5. ∫_2 ^7 f(3x+4)dx.

$$\: \\ $$$$\: \underset{\mathrm{2}} {\overset{\mathrm{7}} {\int}}\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\mathrm{5}. \\ $$$$\: \underset{\mathrm{2}} {\overset{\mathrm{7}} {\int}}\:\mathrm{f}\left(\mathrm{3x}+\mathrm{4}\right)\mathrm{dx}. \\ $$

Question Number 208652    Answers: 1   Comments: 0

Question Number 209957    Answers: 1   Comments: 0

If x, y are contain in natural numbers and x² + y² = 613² Find the values of x + y = ?

If x, y are contain in natural numbers and x² + y² = 613² Find the values of x + y = ?

Question Number 208632    Answers: 1   Comments: 1

∫e^(−x^2 ) dx could this be integrated by part? What approach would most likely be suitable for this integral?

$$\int{e}^{−{x}^{\mathrm{2}} } {dx} \\ $$$${could}\:{this}\:{be}\:{integrated}\:{by}\:{part}?\:{What} \\ $$$${approach}\:{would}\:{most}\:{likely}\:{be}\:{suitable} \\ $$$${for}\:{this}\:{integral}? \\ $$$$ \\ $$

Question Number 208693    Answers: 2   Comments: 0

Calculate the area enclosed by the curve ((1/x)−2)^2 +((1/y)−2)^2 =1

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{area}\:\mathrm{enclosed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\left(\frac{\mathrm{1}}{{x}}−\mathrm{2}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{{y}}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{1} \\ $$

Question Number 208423    Answers: 1   Comments: 0

calculons i=∫∫∫_([0;1]) ((dxdydz)/(1−xyz))

$$\:\:\:\boldsymbol{{calculons}}\: \\ $$$$\boldsymbol{{i}}=\int\int\int_{\left[\mathrm{0};\mathrm{1}\right]} \frac{\boldsymbol{{dxdydz}}}{\mathrm{1}−\boldsymbol{{xyz}}} \\ $$

Question Number 208335    Answers: 1   Comments: 0

∫_(−1) ^1 (√(1−t^4 ))dt

$$\int_{−\mathrm{1}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{t}^{\mathrm{4}} }{dt} \\ $$

Question Number 208334    Answers: 0   Comments: 1

∫_0 ^(4/π) ln(cosx)dx

$$\int_{\mathrm{0}} ^{\frac{\mathrm{4}}{\pi}} {ln}\left({cosx}\right){dx} \\ $$

Question Number 208316    Answers: 1   Comments: 0

∫ ((x^2 + 3)/(x^2 (x + 1)(x^2 + 1)^2 )) dx

$$\int\:\frac{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{3}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}\:\:+\:\:\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx} \\ $$

Question Number 208280    Answers: 1   Comments: 0

L=∫_0 ^(4/π) ln(cosx)dx

$${L}=\int_{\mathrm{0}} ^{\frac{\mathrm{4}}{\pi}} {ln}\left({cosx}\right){dx} \\ $$

Question Number 208245    Answers: 1   Comments: 0

K=∫_0 ^(4/π) ln(cosx)dx

$${K}=\int_{\mathrm{0}} ^{\frac{\mathrm{4}}{\pi}} {ln}\left({cosx}\right){dx} \\ $$

Question Number 208235    Answers: 2   Comments: 0

Question Number 208205    Answers: 1   Comments: 0

∫ (x^3 . 5^(2x^2 −2) ) dx =?

$$\:\:\:\int\:\left({x}^{\mathrm{3}} .\:\mathrm{5}^{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}} \:\right)\:{dx}\:=? \\ $$

Question Number 208194    Answers: 2   Comments: 0

I_n = ∫_(0 ) ^∞ (1/((1+x^2 )^n ))dx prove that Σ_(n=1) ^∞ (I_n /n) = π

$$\:\:\:\:\:\:\:\:{I}_{{n}} \:=\:\:\int_{\mathrm{0}\:} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }{dx} \\ $$$$\:\:{prove}\:{that}\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{I}_{{n}} }{{n}}\:\:=\:\:\pi \\ $$

Question Number 208176    Answers: 1   Comments: 1

Find the value of the folloing integral. determinant ((( 𝛀=∫_0 ^( (𝛑/2)) (( 1)/(1 + (( cosx))^(1/3) )) dx = ? )))

$$ \\ $$$$\:\:\:\:\:\boldsymbol{{Find}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{the}} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{folloing}}\:\boldsymbol{{integral}}. \\ $$$$\:\:\:\:\:\:\: \\ $$$$\begin{array}{|c|}{\:\:\:\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} \:\frac{\:\mathrm{1}}{\mathrm{1}\:+\:\sqrt[{\mathrm{3}}]{\:\boldsymbol{{cosx}}}}\:\boldsymbol{{dx}}\:=\:?\:\:}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\: \\ $$

Question Number 208140    Answers: 1   Comments: 0

∫_0 ^π (dx/(1+((sin x))^(1/3) ))=? exact result required

$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{{dx}}{\mathrm{1}+\sqrt[{\mathrm{3}}]{\mathrm{sin}\:{x}}}=? \\ $$$$\mathrm{exact}\:\mathrm{result}\:\mathrm{required} \\ $$

Question Number 208129    Answers: 2   Comments: 0

x^(303) + x^(73) + 1 ∫_1 ^(379) ^(−1) (x)

$$\:\:\:\: \mathrm{x}^{\mathrm{303}} \:+\: \mathrm{x}^{\mathrm{73}} \:+\:\mathrm{1}\: \\ $$$$\:\:\:\underset{\mathrm{1}} {\overset{\mathrm{379}} {\int}} ^{−\mathrm{1}} \left(\mathrm{x}\right)\: \\ $$

Question Number 208128    Answers: 0   Comments: 0

Question Number 208062    Answers: 1   Comments: 0

find ∫_4 ^∞ (dx/((x+1)^3 (x−3)^5 ))

$${find}\:\:\int_{\mathrm{4}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{3}\right)^{\mathrm{5}} } \\ $$

  Pg 14      Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20      Pg 21      Pg 22      Pg 23   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com