Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 19

Question Number 207924    Answers: 0   Comments: 0

∫f(x)g(x)dx=Σ_(n=0) ^∞ (−1)^n lim_(h→0) (1/h^n ) Σ_(i=o) ^n [ (−1)^i (((n!)/(i!(n−i)!)))f(x+(n−i)h)] (1/(n!))∫_a ^x (x−t)^n g(t)dt prove that right its a relation that i have derrived

$$\int{f}\left({x}\right){g}\left({x}\right){dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\left(−\mathrm{1}\right)^{{n}} \:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{h}^{{n}} }\:\underset{{i}={o}} {\overset{{n}} {\sum}}\left[\:\left(−\mathrm{1}\right)^{{i}} \left(\frac{{n}!}{{i}!\left({n}−{i}\right)!}\right){f}\left({x}+\left({n}−{i}\right){h}\right)\right]\:\frac{\mathrm{1}}{{n}!}\underset{{a}} {\overset{{x}} {\int}}\left({x}−{t}\right)^{{n}} {g}\left({t}\right){dt}\: \\ $$$${prove}\:{that}\:{right} \\ $$$${its}\:{a}\:{relation}\:{that}\:{i}\:{have}\:{derrived} \\ $$

Question Number 207906    Answers: 1   Comments: 0

help ∫_1 ^( ∞) x^(−ln(x)) dx

$${help} \\ $$$$\int_{\mathrm{1}} ^{\:\infty} {x}^{−{ln}\left({x}\right)} {dx} \\ $$$$ \\ $$

Question Number 207878    Answers: 2   Comments: 0

Question Number 207857    Answers: 1   Comments: 0

∫xtan^(−1) xdx

$$\int{x}\mathrm{tan}^{−\mathrm{1}} {xdx} \\ $$

Question Number 207789    Answers: 1   Comments: 0

∀r∈R: H_r =∫_0 ^1 ((t^r −1)/(t−1))dt H_(r+2) −H_r =1 r=?

$$\forall{r}\in\mathbb{R}:\:{H}_{{r}} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{t}^{{r}} −\mathrm{1}}{{t}−\mathrm{1}}{dt} \\ $$$${H}_{{r}+\mathrm{2}} −{H}_{{r}} =\mathrm{1} \\ $$$${r}=? \\ $$

Question Number 207753    Answers: 1   Comments: 0

Question Number 207707    Answers: 0   Comments: 0

∫_0 ^(+∞) ((sin^2 (x))/(sin^2 (x)+(xcos (x)+sin (x))^2 ))d(x)

$$\underset{\mathrm{0}} {\overset{+\infty} {\int}}\frac{\mathrm{sin}\:^{\mathrm{2}} \left({x}\right)}{\mathrm{sin}\:^{\mathrm{2}} \left({x}\right)+\left({x}\mathrm{cos}\:\left({x}\right)+\mathrm{sin}\:\left({x}\right)\right)^{\mathrm{2}} }{d}\left({x}\right) \\ $$

Question Number 207652    Answers: 1   Comments: 0

∫_0 ^1 log(1+x^3 )dx = ?and ∫_0 ^1 log (1+x^4 )dx = ? and if possible then find the value of p p = ∫_0 ^1 log(1+x^n )dx = ? n∈N

$$\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{log}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx}\:\:=\:?{and}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{log}\:\left(\mathrm{1}+{x}^{\mathrm{4}} \right){dx}\:=\:? \\ $$$$\:\:\mathrm{and}\:\mathrm{if}\:\mathrm{possible}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{p} \\ $$$$\:\mathrm{p}\:\:\:=\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{log}\left(\mathrm{1}+{x}^{{n}} \right){dx}\:=\:?\:\:\:\:\:\:{n}\in\mathbb{N} \\ $$

Question Number 207582    Answers: 2   Comments: 0

∫_0 ^π ln(sinx)dx=−πln2 ∫_0 ^1 lnΓ(x)dx = ln(2π)

$$\int_{\mathrm{0}} ^{\pi} \:{ln}\left({sinx}\right){dx}=−\pi{ln}\mathrm{2} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\Gamma\left({x}\right){dx}\:=\:{ln}\left(\mathrm{2}\pi\right) \\ $$

Question Number 207565    Answers: 2   Comments: 0

find ∫_0 ^(π/2) (x^2 /(tan^2 x))dx

$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}^{\mathrm{2}} }{{tan}^{\mathrm{2}} {x}}{dx} \\ $$

Question Number 207424    Answers: 0   Comments: 0

f_n (x):=∫e^((2x)/3) ((cos(x))/( (cos(x)+sin(x))^(n/3) ))dx=...? for n=1, i found f_1 (x)=(3/4)e^((2x)/3) (cos(x)+sin(x))^(2/3) + C is there any ideas for a general case or the case n=2?

$${f}_{{n}} \left({x}\right):=\int{e}^{\frac{\mathrm{2}{x}}{\mathrm{3}}} \frac{{cos}\left({x}\right)}{\:\left({cos}\left({x}\right)+{sin}\left({x}\right)\right)^{\frac{{n}}{\mathrm{3}}} }{dx}=...? \\ $$$${for}\:{n}=\mathrm{1},\:{i}\:{found}\: \\ $$$$\:\:\:\:\:\:{f}_{\mathrm{1}} \left({x}\right)=\frac{\mathrm{3}}{\mathrm{4}}{e}^{\frac{\mathrm{2}{x}}{\mathrm{3}}} \left({cos}\left({x}\right)+{sin}\left({x}\right)\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\:{C} \\ $$$${is}\:{there}\:{any}\:{ideas}\:{for}\:{a}\:{general}\:{case}\:{or} \\ $$$${the}\:{case}\:{n}=\mathrm{2}? \\ $$

Question Number 207383    Answers: 0   Comments: 1

∫((ln(x^2 +sin(sin(e^x ))))/( (√(x+tan(ln(x))))))dx

$$\int\frac{{ln}\left({x}^{\mathrm{2}} +{sin}\left({sin}\left({e}^{{x}} \right)\right)\right)}{\:\sqrt{{x}+{tan}\left({ln}\left({x}\right)\right)}}{dx} \\ $$

Question Number 207382    Answers: 1   Comments: 0

Question Number 207352    Answers: 1   Comments: 3

calculate: ∫_(Π/4) ^(Π/2) ⌊cot(x)⌋ dx

$${calculate}: \\ $$$$\:\int_{\frac{\Pi}{\mathrm{4}}} ^{\frac{\Pi}{\mathrm{2}}} \lfloor{cot}\left({x}\right)\rfloor\:{dx} \\ $$

Question Number 207354    Answers: 0   Comments: 4

Question Number 207359    Answers: 1   Comments: 0

∫((ln(x^2 +sin(sin(e^x ))))/( (√(x+tan(ln(x))))))dx

$$\int\frac{{ln}\left({x}^{\mathrm{2}} +{sin}\left({sin}\left({e}^{{x}} \right)\right)\right)}{\:\sqrt{{x}+{tan}\left({ln}\left({x}\right)\right)}}{dx} \\ $$

Question Number 207099    Answers: 1   Comments: 0

Question Number 207054    Answers: 1   Comments: 0

Ω_α =∫_0 ^1 x^α (√(−xln x)) dx=?

$$\Omega_{\alpha} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{x}^{\alpha} \sqrt{−{x}\mathrm{ln}\:{x}}\:{dx}=? \\ $$

Question Number 206962    Answers: 2   Comments: 0

∫_0 ^1 ((√(1−x))/( (√(1−(√(1−x))))+(√(1+(√(1−x))))))dx=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\sqrt{\mathrm{1}−{x}}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{1}−{x}}}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}−{x}}}}{dx}=? \\ $$

Question Number 206892    Answers: 1   Comments: 0

find ∫_0 ^1 (√(1+(√(1+x^2 ))))dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 206890    Answers: 0   Comments: 1

can some one find the exact value of Σ_(n=0) ^∞ (1/((n!)^2 ))

$${can}\:{some}\:{one}\:{find}\:{the}\:{exact}\:{value}\:{of} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left({n}!\right)^{\mathrm{2}} } \\ $$

Question Number 206858    Answers: 2   Comments: 0

prove that H_n =∫_0 ^1 ((t^n −1)/(t−1))dt

$$\mathrm{prove}\:\mathrm{that} \\ $$$${H}_{{n}} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{t}^{{n}} −\mathrm{1}}{{t}−\mathrm{1}}{dt} \\ $$

Question Number 206830    Answers: 0   Comments: 0

c = (√((∫_a_0 ^a_1 (√(1+[f′(x)]^2 ))dx)^2 +(∫_b_0 ^b_1 (√(1+[f′(x)]^2 ))dx)^2 )) c = (√(L_1 ^2 +L_2 ^2 ))

$${c}\:=\:\sqrt{\left(\int_{{a}_{\mathrm{0}} } ^{{a}_{\mathrm{1}} } \sqrt{\mathrm{1}+\left[{f}'\left({x}\right)\right]^{\mathrm{2}} }{dx}\right)^{\mathrm{2}} +\left(\int_{{b}_{\mathrm{0}} } ^{{b}_{\mathrm{1}} } \sqrt{\mathrm{1}+\left[{f}'\left({x}\right)\right]^{\mathrm{2}} }{dx}\right)^{\mathrm{2}} } \\ $$$${c}\:=\:\sqrt{{L}_{\mathrm{1}} ^{\mathrm{2}} +{L}_{\mathrm{2}} ^{\mathrm{2}} } \\ $$

Question Number 206829    Answers: 0   Comments: 1

∮(x/(x+2))dx^2 is wrong?

$$\:\:\:\:\:\oint\frac{{x}}{{x}+\mathrm{2}}{dx}^{\mathrm{2}} \:\:\:\:{is}\:{wrong}? \\ $$

Question Number 206789    Answers: 1   Comments: 0

Question Number 206754    Answers: 1   Comments: 0

find ∫_0 ^1 (√(1−(√x)))ln^2 (x)dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−\sqrt{{x}}}{ln}^{\mathrm{2}} \left({x}\right){dx} \\ $$

  Pg 14      Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20      Pg 21      Pg 22      Pg 23   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com