Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 19

Question Number 208129    Answers: 2   Comments: 0

x^(303) + x^(73) + 1 ∫_1 ^(379) ^(−1) (x)

$$\:\:\:\: \mathrm{x}^{\mathrm{303}} \:+\: \mathrm{x}^{\mathrm{73}} \:+\:\mathrm{1}\: \\ $$$$\:\:\:\underset{\mathrm{1}} {\overset{\mathrm{379}} {\int}} ^{−\mathrm{1}} \left(\mathrm{x}\right)\: \\ $$

Question Number 208128    Answers: 0   Comments: 0

Question Number 208062    Answers: 1   Comments: 0

find ∫_4 ^∞ (dx/((x+1)^3 (x−3)^5 ))

$${find}\:\:\int_{\mathrm{4}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{3}\right)^{\mathrm{5}} } \\ $$

Question Number 208052    Answers: 0   Comments: 3

Sketch the curve y = x^3 . (a) Find the equation of the tangent to the curve at A(1,1). (b) Find the coordinates of point B, where the tangent meets the curve again. (c) Calculate the area between the tangent B and the arc AB of the curve.

$${Sketch}\:{the}\:{curve}\:{y}\:=\:{x}^{\mathrm{3}} . \\ $$$$\left({a}\right)\:{Find}\:{the}\:{equation}\:{of}\:{the}\:{tangent} \\ $$$${to}\:{the}\:{curve}\:{at}\:{A}\left(\mathrm{1},\mathrm{1}\right). \\ $$$$\left({b}\right)\:{Find}\:{the}\:{coordinates}\:{of}\:{point}\:{B}, \\ $$$${where}\:{the}\:{tangent}\:{meets}\:{the}\:{curve}\:{again}. \\ $$$$\left({c}\right)\:{Calculate}\:{the}\:{area}\:{between}\:{the} \\ $$$${tangent}\:{B}\:{and}\:{the}\:{arc}\:{AB}\:{of}\:{the}\:{curve}. \\ $$

Question Number 207949    Answers: 2   Comments: 0

Find the value of : 𝛀 = ∫_0 ^( (𝛑/2)) (( dx)/(sin^6 x + cos^6 x)) = ? −−−−−−−−−

$$ \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:{Find}\:{the}\:{value}\:{of}\:: \\ $$$$ \\ $$$$\:\:\:\:\boldsymbol{\Omega}\:=\:\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} \:\frac{\:\boldsymbol{{dx}}}{\boldsymbol{{sin}}^{\mathrm{6}} \boldsymbol{{x}}\:+\:\boldsymbol{{cos}}^{\mathrm{6}} \boldsymbol{{x}}}\:=\:?\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$

Question Number 207938    Answers: 1   Comments: 0

what is the area bounded by the curve y=x(x−2)(x−5) and the x axis?

$${what}\:{is}\:{the}\:{area}\:{bounded}\:{by}\:{the}\:{curve} \\ $$$${y}={x}\left({x}−\mathrm{2}\right)\left({x}−\mathrm{5}\right)\:{and}\:{the}\:{x}\:{axis}? \\ $$$$ \\ $$

Question Number 207924    Answers: 0   Comments: 0

∫f(x)g(x)dx=Σ_(n=0) ^∞ (−1)^n lim_(h→0) (1/h^n ) Σ_(i=o) ^n [ (−1)^i (((n!)/(i!(n−i)!)))f(x+(n−i)h)] (1/(n!))∫_a ^x (x−t)^n g(t)dt prove that right its a relation that i have derrived

$$\int{f}\left({x}\right){g}\left({x}\right){dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\left(−\mathrm{1}\right)^{{n}} \:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{h}^{{n}} }\:\underset{{i}={o}} {\overset{{n}} {\sum}}\left[\:\left(−\mathrm{1}\right)^{{i}} \left(\frac{{n}!}{{i}!\left({n}−{i}\right)!}\right){f}\left({x}+\left({n}−{i}\right){h}\right)\right]\:\frac{\mathrm{1}}{{n}!}\underset{{a}} {\overset{{x}} {\int}}\left({x}−{t}\right)^{{n}} {g}\left({t}\right){dt}\: \\ $$$${prove}\:{that}\:{right} \\ $$$${its}\:{a}\:{relation}\:{that}\:{i}\:{have}\:{derrived} \\ $$

Question Number 207906    Answers: 1   Comments: 0

help ∫_1 ^( ∞) x^(−ln(x)) dx

$${help} \\ $$$$\int_{\mathrm{1}} ^{\:\infty} {x}^{−{ln}\left({x}\right)} {dx} \\ $$$$ \\ $$

Question Number 207878    Answers: 2   Comments: 0

Question Number 207857    Answers: 1   Comments: 0

∫xtan^(−1) xdx

$$\int{x}\mathrm{tan}^{−\mathrm{1}} {xdx} \\ $$

Question Number 207789    Answers: 1   Comments: 0

∀r∈R: H_r =∫_0 ^1 ((t^r −1)/(t−1))dt H_(r+2) −H_r =1 r=?

$$\forall{r}\in\mathbb{R}:\:{H}_{{r}} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{t}^{{r}} −\mathrm{1}}{{t}−\mathrm{1}}{dt} \\ $$$${H}_{{r}+\mathrm{2}} −{H}_{{r}} =\mathrm{1} \\ $$$${r}=? \\ $$

Question Number 207753    Answers: 1   Comments: 0

Question Number 207707    Answers: 0   Comments: 0

∫_0 ^(+∞) ((sin^2 (x))/(sin^2 (x)+(xcos (x)+sin (x))^2 ))d(x)

$$\underset{\mathrm{0}} {\overset{+\infty} {\int}}\frac{\mathrm{sin}\:^{\mathrm{2}} \left({x}\right)}{\mathrm{sin}\:^{\mathrm{2}} \left({x}\right)+\left({x}\mathrm{cos}\:\left({x}\right)+\mathrm{sin}\:\left({x}\right)\right)^{\mathrm{2}} }{d}\left({x}\right) \\ $$

Question Number 207652    Answers: 1   Comments: 0

∫_0 ^1 log(1+x^3 )dx = ?and ∫_0 ^1 log (1+x^4 )dx = ? and if possible then find the value of p p = ∫_0 ^1 log(1+x^n )dx = ? n∈N

$$\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{log}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx}\:\:=\:?{and}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{log}\:\left(\mathrm{1}+{x}^{\mathrm{4}} \right){dx}\:=\:? \\ $$$$\:\:\mathrm{and}\:\mathrm{if}\:\mathrm{possible}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{p} \\ $$$$\:\mathrm{p}\:\:\:=\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{log}\left(\mathrm{1}+{x}^{{n}} \right){dx}\:=\:?\:\:\:\:\:\:{n}\in\mathbb{N} \\ $$

Question Number 207582    Answers: 2   Comments: 0

∫_0 ^π ln(sinx)dx=−πln2 ∫_0 ^1 lnΓ(x)dx = ln(2π)

$$\int_{\mathrm{0}} ^{\pi} \:{ln}\left({sinx}\right){dx}=−\pi{ln}\mathrm{2} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\Gamma\left({x}\right){dx}\:=\:{ln}\left(\mathrm{2}\pi\right) \\ $$

Question Number 207565    Answers: 2   Comments: 0

find ∫_0 ^(π/2) (x^2 /(tan^2 x))dx

$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}^{\mathrm{2}} }{{tan}^{\mathrm{2}} {x}}{dx} \\ $$

Question Number 207424    Answers: 0   Comments: 0

f_n (x):=∫e^((2x)/3) ((cos(x))/( (cos(x)+sin(x))^(n/3) ))dx=...? for n=1, i found f_1 (x)=(3/4)e^((2x)/3) (cos(x)+sin(x))^(2/3) + C is there any ideas for a general case or the case n=2?

$${f}_{{n}} \left({x}\right):=\int{e}^{\frac{\mathrm{2}{x}}{\mathrm{3}}} \frac{{cos}\left({x}\right)}{\:\left({cos}\left({x}\right)+{sin}\left({x}\right)\right)^{\frac{{n}}{\mathrm{3}}} }{dx}=...? \\ $$$${for}\:{n}=\mathrm{1},\:{i}\:{found}\: \\ $$$$\:\:\:\:\:\:{f}_{\mathrm{1}} \left({x}\right)=\frac{\mathrm{3}}{\mathrm{4}}{e}^{\frac{\mathrm{2}{x}}{\mathrm{3}}} \left({cos}\left({x}\right)+{sin}\left({x}\right)\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\:{C} \\ $$$${is}\:{there}\:{any}\:{ideas}\:{for}\:{a}\:{general}\:{case}\:{or} \\ $$$${the}\:{case}\:{n}=\mathrm{2}? \\ $$

Question Number 207383    Answers: 0   Comments: 1

∫((ln(x^2 +sin(sin(e^x ))))/( (√(x+tan(ln(x))))))dx

$$\int\frac{{ln}\left({x}^{\mathrm{2}} +{sin}\left({sin}\left({e}^{{x}} \right)\right)\right)}{\:\sqrt{{x}+{tan}\left({ln}\left({x}\right)\right)}}{dx} \\ $$

Question Number 207382    Answers: 1   Comments: 0

Question Number 207352    Answers: 1   Comments: 3

calculate: ∫_(Π/4) ^(Π/2) ⌊cot(x)⌋ dx

$${calculate}: \\ $$$$\:\int_{\frac{\Pi}{\mathrm{4}}} ^{\frac{\Pi}{\mathrm{2}}} \lfloor{cot}\left({x}\right)\rfloor\:{dx} \\ $$

Question Number 207354    Answers: 0   Comments: 4

Question Number 207359    Answers: 1   Comments: 0

∫((ln(x^2 +sin(sin(e^x ))))/( (√(x+tan(ln(x))))))dx

$$\int\frac{{ln}\left({x}^{\mathrm{2}} +{sin}\left({sin}\left({e}^{{x}} \right)\right)\right)}{\:\sqrt{{x}+{tan}\left({ln}\left({x}\right)\right)}}{dx} \\ $$

Question Number 207099    Answers: 1   Comments: 0

Question Number 207054    Answers: 1   Comments: 0

Ω_α =∫_0 ^1 x^α (√(−xln x)) dx=?

$$\Omega_{\alpha} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{x}^{\alpha} \sqrt{−{x}\mathrm{ln}\:{x}}\:{dx}=? \\ $$

Question Number 206962    Answers: 2   Comments: 0

∫_0 ^1 ((√(1−x))/( (√(1−(√(1−x))))+(√(1+(√(1−x))))))dx=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\sqrt{\mathrm{1}−{x}}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{1}−{x}}}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}−{x}}}}{dx}=? \\ $$

Question Number 206892    Answers: 1   Comments: 0

find ∫_0 ^1 (√(1+(√(1+x^2 ))))dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$

  Pg 14      Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20      Pg 21      Pg 22      Pg 23   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com