Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 19

Question Number 200257    Answers: 1   Comments: 0

Question Number 200256    Answers: 0   Comments: 0

Question Number 200254    Answers: 1   Comments: 0

calculate ... Ω = ∫_(∫_0 ^( (π/2)) ln(tan(x))dx) ^( ∫_0 ^( ∞) ((sin^2 (x))/x^2 ) dx) ln(sin(x))dx=?

$$ \\ $$$$\:\:\:\:\:\:{calculate}\:... \\ $$$$\:\:\Omega\:=\:\int_{\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\mathrm{ln}\left(\mathrm{tan}\left({x}\right)\right){dx}} ^{\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }\:{dx}} \mathrm{ln}\left(\mathrm{sin}\left({x}\right)\right){dx}=? \\ $$

Question Number 200253    Answers: 2   Comments: 0

Question Number 200250    Answers: 2   Comments: 0

Question Number 200159    Answers: 1   Comments: 2

Question Number 200155    Answers: 2   Comments: 0

Question Number 200130    Answers: 2   Comments: 0

solve by contour integrstion ∫_0 ^(2π) (dx/(1+acosx))

$$\:\:{solve}\:{by}\:{contour}\:{integrstion} \\ $$$$\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{\mathrm{1}+{a}\mathrm{cos}{x}}\: \\ $$

Question Number 200048    Answers: 0   Comments: 2

Question Number 200061    Answers: 1   Comments: 0

∫_(−∞) ^(+∞) ((xsinx )/((x^2 +1)(x^2 +4)))dx = ??

$$\:\:\:\:\int_{−\infty} ^{+\infty} \frac{{x}\mathrm{sin}{x}\:}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{dx}\:\:=\:\:\:?? \\ $$

Question Number 199942    Answers: 1   Comments: 0

Question Number 199934    Answers: 2   Comments: 0

$$\:\:\:\cancel{\underline{\underbrace{ }}\:} \\ $$$$ \\ $$

Question Number 199921    Answers: 1   Comments: 0

Question Number 199907    Answers: 1   Comments: 0

∫ (dx/( (√x) + (x)^(1/3) )) =?

$$\:\:\:\:\:\int\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\:=?\: \\ $$

Question Number 199903    Answers: 2   Comments: 1

∫((x^2 dx)/( (√(x^2 −16)))) = ?

$$\int\frac{{x}^{\mathrm{2}} {dx}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{16}}}\:=\:? \\ $$

Question Number 199598    Answers: 0   Comments: 0

Question Number 199570    Answers: 1   Comments: 0

I = ∫_0 ^(π/2) tan^(−1) (((sinx )/2))dx

$$\:\:\:\:\:\:\:\:\mathrm{I}\:\:\:\:\:=\:\:\:\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{sin}{x}\:}{\mathrm{2}}\right){dx} \\ $$

Question Number 199471    Answers: 1   Comments: 0

Find the integral ∫_(−3) ^3 { ((x^3 −x),((x≤0))),(x^2 ,((x≥0))) :}dx

$${Find}\:{the}\:{integral} \\ $$$$\int_{−\mathrm{3}} ^{\mathrm{3}} \begin{cases}{{x}^{\mathrm{3}} −{x}}&{\left({x}\leq\mathrm{0}\right)}\\{{x}^{\mathrm{2}} }&{\left({x}\geq\mathrm{0}\right)}\end{cases}{dx} \\ $$

Question Number 199468    Answers: 1   Comments: 0

Question Number 199377    Answers: 1   Comments: 0

∫∫_R cos (max{x^3 , y^(3/2) })dx dy , where R = [0,1]×[0,1]

$$\:\:\int\underset{\mathrm{R}} {\int}\mathrm{cos}\:\left(\mathrm{max}\left\{\mathrm{x}^{\mathrm{3}} ,\:\mathrm{y}^{\mathrm{3}/\mathrm{2}} \right\}\right)\mathrm{dx}\:\mathrm{dy}\:,\:\mathrm{where}\:\mathrm{R}\:=\:\left[\mathrm{0},\mathrm{1}\right]×\left[\mathrm{0},\mathrm{1}\right] \\ $$

Question Number 199369    Answers: 0   Comments: 0

∫_(−1) ^1 ∫_(−(√(1−x^2 ))) ^(√(1−x^2 )) ∫_(1−(√(1−x^2 −y^2 ))) ^(1+(√(1−y^2 ))) (x^2 +y^2 +z^2 )^(5/2) dx dy dz is

$$\int_{−\mathrm{1}} ^{\mathrm{1}} \:\int_{−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:}} ^{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \:\int_{\mathrm{1}−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }} ^{\mathrm{1}+\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\mathrm{5}/\mathrm{2}} {dx}\:{dy}\:{dz}\:\:{is} \\ $$

Question Number 199213    Answers: 1   Comments: 0

Question Number 199162    Answers: 0   Comments: 0

x=−2(√3)∫y^3 (√(1+(1/y))) dy Find ∫x(y)dy .

$${x}=−\mathrm{2}\sqrt{\mathrm{3}}\int{y}^{\mathrm{3}} \sqrt{\mathrm{1}+\frac{\mathrm{1}}{{y}}}\:{dy} \\ $$$${Find}\:\:\int{x}\left({y}\right){dy}\:\:\:. \\ $$

Question Number 198948    Answers: 2   Comments: 0

∫_1 ^3 ((x−2)/(x^2 −4x)) dx= ....

$$\int_{\mathrm{1}} ^{\mathrm{3}} \frac{\mathrm{x}−\mathrm{2}}{\mathrm{x}^{\mathrm{2}} −\mathrm{4x}}\:\mathrm{dx}=\:.... \\ $$

Question Number 198929    Answers: 0   Comments: 0

Question Number 198802    Answers: 1   Comments: 0

radius r circle ; x^2 +y^2 +z^2 =r^2 F^ (x,y,z)=yze_1 ^ +xe_2 ^ −xye_3 ^ Find flux 𝛒=∫∫_( 𝚺) F^ ∙n^ dS

$$\mathrm{radius}\:{r}\:\mathrm{circle}\:;\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\hat {\boldsymbol{\mathrm{F}}}\left({x},{y},{z}\right)={yz}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +{x}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} −{xy}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} \\ $$$$\mathrm{Find}\:\mathrm{flux}\:\boldsymbol{\rho}=\int\int_{\:\boldsymbol{\Sigma}} \:\hat {\boldsymbol{\mathrm{F}}}\centerdot\hat {\boldsymbol{\mathrm{n}}}\:\mathrm{d}{S} \\ $$

  Pg 14      Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20      Pg 21      Pg 22      Pg 23   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com