Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 188
Question Number 87839 Answers: 1 Comments: 0
$$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{4x}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:\sqrt{\mathrm{tan}\:^{\mathrm{4}} \mathrm{x}+\mathrm{1}}}\:\mathrm{dx} \\ $$
Question Number 87815 Answers: 1 Comments: 3
$$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{cos}\:\mathrm{2x}\left(\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}\right)\:\mathrm{dx} \\ $$
Question Number 87793 Answers: 2 Comments: 0
$${show}\:{that} \\ $$$$\int{e}^{{sin}\left({x}\right)} \:{dx}= \\ $$$$−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\left[\:{cos}\left({x}\right)\ast\left({sin}\left({x}\right)\right)^{{n}+\mathrm{1}} \ast\left[\left({sin}\left({x}\right)\right)^{\mathrm{2}} \right]^{\left(\frac{−{n}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)} \ast\:\mathrm{2}{F}_{\mathrm{1}} \left[\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}−{n}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};\left({cos}\left({x}\right)\right)^{\mathrm{2}} \right]\:\right]+{c} \\ $$$$ \\ $$$${notice}\backslash\mathrm{2}{F}_{\mathrm{1}} \:{is}\:{special}\:{function}\:{called}\:{hypergeometric}\:{function} \\ $$
Question Number 87769 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{ln}\left(\mathrm{e}^{\mathrm{x}} +\mathrm{1}\right)}{\mathrm{e}^{−\mathrm{x}} +\mathrm{1}}\:\mathrm{dx}\: \\ $$
Question Number 87757 Answers: 0 Comments: 2
$$\int_{\mathrm{a}} ^{\mathrm{b}} \:\frac{\sqrt{\mathrm{x}−\mathrm{a}}}{\sqrt{\mathrm{b}−\mathrm{x}}}\:\mathrm{dx}\:=?\: \\ $$
Question Number 87723 Answers: 1 Comments: 0
$$\int\left(\frac{\mathrm{1}}{{x}−\mathrm{1}}+\frac{\underset{{k}=\mathrm{0}} {\overset{\mathrm{2018}} {\sum}}\left({k}+\mathrm{1}\right){x}^{{k}} }{\underset{{k}=\mathrm{0}} {\overset{\mathrm{2019}} {\sum}}{x}^{{k}} }\right){dx} \\ $$
Question Number 87716 Answers: 1 Comments: 1
Question Number 87711 Answers: 1 Comments: 2
$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{xe}^{−{x}} −{e}^{−{x}} }{{x}\left({e}^{{x}} −{e}^{−{x}} \right)}{dx} \\ $$
Question Number 87709 Answers: 0 Comments: 0
$${sbow}\:{that} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\left[\mathrm{3}{x}\right]}{\left(\left[{x}\right]\right)!}{dx}=\mathrm{4}{e}−\mathrm{1} \\ $$
Question Number 87692 Answers: 0 Comments: 8
$${sir}\:{Ma}?{h}+{t}?{que}\:{you}\:{have}\:{posted} \\ $$$$\int\frac{{dx}}{\left(\left({x}+\mathrm{1}\right)....\left({x}+{n}\right)\right)^{\mathrm{2}} }=......{can}\:{you}\:{reposted}\:{it}\:{please} \\ $$
Question Number 87686 Answers: 3 Comments: 0
$$\int\sqrt{\frac{{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx} \\ $$
Question Number 87669 Answers: 1 Comments: 4
$$\int_{\mathrm{2}} ^{\:\:\mathrm{e}} \left(\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{ln}^{\mathrm{2}} \mathrm{x}}\right)\:\mathrm{dx}? \\ $$
Question Number 87585 Answers: 1 Comments: 0
Question Number 87556 Answers: 1 Comments: 1
Question Number 87543 Answers: 0 Comments: 0
Question Number 87540 Answers: 1 Comments: 1
Question Number 87538 Answers: 0 Comments: 7
Question Number 87534 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{arctan}\left({sinx}\right)}{{sinx}}{dx} \\ $$
Question Number 87527 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx} \\ $$
Question Number 87526 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left[{nx}\right]} \:{dx} \\ $$
Question Number 87511 Answers: 2 Comments: 0
Question Number 87503 Answers: 1 Comments: 4
$$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{5}} }{dx} \\ $$
Question Number 87854 Answers: 0 Comments: 3
$$\int\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{x}+\mathrm{2cos}\:\mathrm{x}+\mathrm{3}}\:\mathrm{dx} \\ $$
Question Number 87461 Answers: 1 Comments: 1
$$\underset{{e}^{-\mathrm{1}} } {\overset{\mathrm{e}} {\int}}\:\frac{\sqrt{\mathrm{1}−\left(\mathrm{ln}{x}\right)^{\mathrm{2}} }}{{x}}\:{dx} \\ $$
Question Number 87371 Answers: 1 Comments: 3
$$\int\frac{{x}^{\mathrm{7}} +{x}^{\mathrm{3}} +\mathrm{4}}{{x}^{\mathrm{8}} −{x}^{\mathrm{5}} +\mathrm{9}}{dx} \\ $$
Question Number 87340 Answers: 3 Comments: 3
$$\int\:\frac{\mathrm{cos}\:\mathrm{x}}{\left(\mathrm{5}+\mathrm{4cos}\:\mathrm{x}\right)^{\mathrm{2}} }\:\mathrm{dx}\:= \\ $$
Pg 183 Pg 184 Pg 185 Pg 186 Pg 187 Pg 188 Pg 189 Pg 190 Pg 191 Pg 192
Terms of Service
Privacy Policy
Contact: info@tinkutara.com