Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 188

Question Number 87839    Answers: 1   Comments: 0

I = ∫_0 ^(π/4) ((sin 4x)/(cos^2 x (√(tan^4 x+1)))) dx

$$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{4x}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:\sqrt{\mathrm{tan}\:^{\mathrm{4}} \mathrm{x}+\mathrm{1}}}\:\mathrm{dx} \\ $$

Question Number 87815    Answers: 1   Comments: 3

I = ∫_0 ^(π/2) cos 2x(cos^4 x+sin^4 x) dx

$$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{cos}\:\mathrm{2x}\left(\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 87793    Answers: 2   Comments: 0

show that ∫e^(sin(x)) dx= −Σ_(n=0) ^∞ (1/(n!))[ cos(x)∗(sin(x))^(n+1) ∗[(sin(x))^2 ]^((((−n)/2)−(1/2))) ∗ 2F_1 [(1/2),((1−n)/2);(3/2);(cos(x))^2 ] ]+c notice\2F_1 is special function called hypergeometric function

$${show}\:{that} \\ $$$$\int{e}^{{sin}\left({x}\right)} \:{dx}= \\ $$$$−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\left[\:{cos}\left({x}\right)\ast\left({sin}\left({x}\right)\right)^{{n}+\mathrm{1}} \ast\left[\left({sin}\left({x}\right)\right)^{\mathrm{2}} \right]^{\left(\frac{−{n}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)} \ast\:\mathrm{2}{F}_{\mathrm{1}} \left[\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}−{n}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};\left({cos}\left({x}\right)\right)^{\mathrm{2}} \right]\:\right]+{c} \\ $$$$ \\ $$$${notice}\backslash\mathrm{2}{F}_{\mathrm{1}} \:{is}\:{special}\:{function}\:{called}\:{hypergeometric}\:{function} \\ $$

Question Number 87769    Answers: 2   Comments: 0

∫ ((ln(e^x +1))/(e^(−x) +1)) dx

$$\int\:\frac{\mathrm{ln}\left(\mathrm{e}^{\mathrm{x}} +\mathrm{1}\right)}{\mathrm{e}^{−\mathrm{x}} +\mathrm{1}}\:\mathrm{dx}\: \\ $$

Question Number 87757    Answers: 0   Comments: 2

∫_a ^b ((√(x−a))/(√(b−x))) dx =?

$$\int_{\mathrm{a}} ^{\mathrm{b}} \:\frac{\sqrt{\mathrm{x}−\mathrm{a}}}{\sqrt{\mathrm{b}−\mathrm{x}}}\:\mathrm{dx}\:=?\: \\ $$

Question Number 87723    Answers: 1   Comments: 0

∫((1/(x−1))+((Σ_(k=0) ^(2018) (k+1)x^k )/(Σ_(k=0) ^(2019) x^k )))dx

$$\int\left(\frac{\mathrm{1}}{{x}−\mathrm{1}}+\frac{\underset{{k}=\mathrm{0}} {\overset{\mathrm{2018}} {\sum}}\left({k}+\mathrm{1}\right){x}^{{k}} }{\underset{{k}=\mathrm{0}} {\overset{\mathrm{2019}} {\sum}}{x}^{{k}} }\right){dx} \\ $$

Question Number 87716    Answers: 1   Comments: 1

Question Number 87711    Answers: 1   Comments: 2

∫_0 ^∞ ((1−xe^(−x) −e^(−x) )/(x(e^x −e^(−x) )))dx

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{xe}^{−{x}} −{e}^{−{x}} }{{x}\left({e}^{{x}} −{e}^{−{x}} \right)}{dx} \\ $$

Question Number 87709    Answers: 0   Comments: 0

sbow that ∫_1 ^∞ (([3x])/(([x])!))dx=4e−1

$${sbow}\:{that} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\left[\mathrm{3}{x}\right]}{\left(\left[{x}\right]\right)!}{dx}=\mathrm{4}{e}−\mathrm{1} \\ $$

Question Number 87692    Answers: 0   Comments: 8

sir Ma?h+t?que you have posted ∫(dx/(((x+1)....(x+n))^2 ))=......can you reposted it please

$${sir}\:{Ma}?{h}+{t}?{que}\:{you}\:{have}\:{posted} \\ $$$$\int\frac{{dx}}{\left(\left({x}+\mathrm{1}\right)....\left({x}+{n}\right)\right)^{\mathrm{2}} }=......{can}\:{you}\:{reposted}\:{it}\:{please} \\ $$

Question Number 87686    Answers: 3   Comments: 0

∫(√((ln(x+(√(1+x^2 ))))/(1+x^2 ))) dx

$$\int\sqrt{\frac{{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx} \\ $$

Question Number 87669    Answers: 1   Comments: 4

∫_2 ^( e) ((1/(ln x))−(1/(ln^2 x))) dx?

$$\int_{\mathrm{2}} ^{\:\:\mathrm{e}} \left(\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{ln}^{\mathrm{2}} \mathrm{x}}\right)\:\mathrm{dx}? \\ $$

Question Number 87585    Answers: 1   Comments: 0

Question Number 87556    Answers: 1   Comments: 1

Question Number 87543    Answers: 0   Comments: 0

Question Number 87540    Answers: 1   Comments: 1

Question Number 87538    Answers: 0   Comments: 7

Question Number 87534    Answers: 0   Comments: 1

calculate ∫_0 ^(π/4) ((arctan(sinx))/(sinx))dx

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{arctan}\left({sinx}\right)}{{sinx}}{dx} \\ $$

Question Number 87527    Answers: 0   Comments: 1

find ∫_0 ^∞ ((arctan(3x))/(x^2 +x+1))dx

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx} \\ $$

Question Number 87526    Answers: 0   Comments: 1

calculate ∫_0 ^∞ e^(−[nx]) dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left[{nx}\right]} \:{dx} \\ $$

Question Number 87511    Answers: 2   Comments: 0

Question Number 87503    Answers: 1   Comments: 4

∫(x^2 /(1+x^5 ))dx

$$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{5}} }{dx} \\ $$

Question Number 87854    Answers: 0   Comments: 3

∫ (1/(sin x+2cos x+3)) dx

$$\int\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{x}+\mathrm{2cos}\:\mathrm{x}+\mathrm{3}}\:\mathrm{dx} \\ $$

Question Number 87461    Answers: 1   Comments: 1

∫_e^(-1) ^e ((√(1−(lnx)^2 ))/x) dx

$$\underset{{e}^{-\mathrm{1}} } {\overset{\mathrm{e}} {\int}}\:\frac{\sqrt{\mathrm{1}−\left(\mathrm{ln}{x}\right)^{\mathrm{2}} }}{{x}}\:{dx} \\ $$

Question Number 87371    Answers: 1   Comments: 3

∫((x^7 +x^3 +4)/(x^8 −x^5 +9))dx

$$\int\frac{{x}^{\mathrm{7}} +{x}^{\mathrm{3}} +\mathrm{4}}{{x}^{\mathrm{8}} −{x}^{\mathrm{5}} +\mathrm{9}}{dx} \\ $$

Question Number 87340    Answers: 3   Comments: 3

∫ ((cos x)/((5+4cos x)^2 )) dx =

$$\int\:\frac{\mathrm{cos}\:\mathrm{x}}{\left(\mathrm{5}+\mathrm{4cos}\:\mathrm{x}\right)^{\mathrm{2}} }\:\mathrm{dx}\:= \\ $$

  Pg 183      Pg 184      Pg 185      Pg 186      Pg 187      Pg 188      Pg 189      Pg 190      Pg 191      Pg 192   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com