Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 188

Question Number 87711    Answers: 1   Comments: 2

∫_0 ^∞ ((1−xe^(−x) −e^(−x) )/(x(e^x −e^(−x) )))dx

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{xe}^{−{x}} −{e}^{−{x}} }{{x}\left({e}^{{x}} −{e}^{−{x}} \right)}{dx} \\ $$

Question Number 87709    Answers: 0   Comments: 0

sbow that ∫_1 ^∞ (([3x])/(([x])!))dx=4e−1

$${sbow}\:{that} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\left[\mathrm{3}{x}\right]}{\left(\left[{x}\right]\right)!}{dx}=\mathrm{4}{e}−\mathrm{1} \\ $$

Question Number 87692    Answers: 0   Comments: 8

sir Ma?h+t?que you have posted ∫(dx/(((x+1)....(x+n))^2 ))=......can you reposted it please

$${sir}\:{Ma}?{h}+{t}?{que}\:{you}\:{have}\:{posted} \\ $$$$\int\frac{{dx}}{\left(\left({x}+\mathrm{1}\right)....\left({x}+{n}\right)\right)^{\mathrm{2}} }=......{can}\:{you}\:{reposted}\:{it}\:{please} \\ $$

Question Number 87686    Answers: 3   Comments: 0

∫(√((ln(x+(√(1+x^2 ))))/(1+x^2 ))) dx

$$\int\sqrt{\frac{{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx} \\ $$

Question Number 87669    Answers: 1   Comments: 4

∫_2 ^( e) ((1/(ln x))−(1/(ln^2 x))) dx?

$$\int_{\mathrm{2}} ^{\:\:\mathrm{e}} \left(\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{ln}^{\mathrm{2}} \mathrm{x}}\right)\:\mathrm{dx}? \\ $$

Question Number 87585    Answers: 1   Comments: 0

Question Number 87556    Answers: 1   Comments: 1

Question Number 87543    Answers: 0   Comments: 0

Question Number 87540    Answers: 1   Comments: 1

Question Number 87538    Answers: 0   Comments: 7

Question Number 87534    Answers: 0   Comments: 1

calculate ∫_0 ^(π/4) ((arctan(sinx))/(sinx))dx

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{arctan}\left({sinx}\right)}{{sinx}}{dx} \\ $$

Question Number 87527    Answers: 0   Comments: 1

find ∫_0 ^∞ ((arctan(3x))/(x^2 +x+1))dx

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx} \\ $$

Question Number 87526    Answers: 0   Comments: 1

calculate ∫_0 ^∞ e^(−[nx]) dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left[{nx}\right]} \:{dx} \\ $$

Question Number 87511    Answers: 2   Comments: 0

Question Number 87503    Answers: 1   Comments: 4

∫(x^2 /(1+x^5 ))dx

$$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{5}} }{dx} \\ $$

Question Number 87854    Answers: 0   Comments: 3

∫ (1/(sin x+2cos x+3)) dx

$$\int\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{x}+\mathrm{2cos}\:\mathrm{x}+\mathrm{3}}\:\mathrm{dx} \\ $$

Question Number 87461    Answers: 1   Comments: 1

∫_e^(-1) ^e ((√(1−(lnx)^2 ))/x) dx

$$\underset{{e}^{-\mathrm{1}} } {\overset{\mathrm{e}} {\int}}\:\frac{\sqrt{\mathrm{1}−\left(\mathrm{ln}{x}\right)^{\mathrm{2}} }}{{x}}\:{dx} \\ $$

Question Number 87371    Answers: 1   Comments: 3

∫((x^7 +x^3 +4)/(x^8 −x^5 +9))dx

$$\int\frac{{x}^{\mathrm{7}} +{x}^{\mathrm{3}} +\mathrm{4}}{{x}^{\mathrm{8}} −{x}^{\mathrm{5}} +\mathrm{9}}{dx} \\ $$

Question Number 87340    Answers: 3   Comments: 3

∫ ((cos x)/((5+4cos x)^2 )) dx =

$$\int\:\frac{\mathrm{cos}\:\mathrm{x}}{\left(\mathrm{5}+\mathrm{4cos}\:\mathrm{x}\right)^{\mathrm{2}} }\:\mathrm{dx}\:= \\ $$

Question Number 87325    Answers: 1   Comments: 3

1) ∫e^(√x) dx 2)∫((√(sin(x)))/((√(sin(x)))+(√(cos(x)))))dx

$$\left.\mathrm{1}\right)\:\int{e}^{\sqrt{{x}}} \:{dx} \\ $$$$\left.\mathrm{2}\right)\int\frac{\sqrt{{sin}\left({x}\right)}}{\sqrt{{sin}\left({x}\right)}+\sqrt{{cos}\left({x}\right)}}{dx} \\ $$

Question Number 87306    Answers: 1   Comments: 9

calculate by complex method ∫_1 ^(+∞) ((xdx)/(x^4 +1))

$${calculate}\:{by}\:{complex}\:{method}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{xdx}}{{x}^{\mathrm{4}} \:+\mathrm{1}} \\ $$

Question Number 87301    Answers: 0   Comments: 3

Question Number 87298    Answers: 1   Comments: 0

If y=sin x , x=0 to x=2π is revolved about the x-axis, find the surface of the solid of revolution.

$${If}\:{y}=\mathrm{sin}\:{x}\:,\:\:{x}=\mathrm{0}\:{to}\:{x}=\mathrm{2}\pi\:{is} \\ $$$${revolved}\:{about}\:{the}\:{x}-{axis},\:{find} \\ $$$${the}\:{surface}\:{of}\:{the}\:{solid}\:{of} \\ $$$${revolution}. \\ $$

Question Number 87296    Answers: 1   Comments: 0

If ellipse (x^2 /a^2 )+(y^2 /b^2 )=1 (a>b) is rotated about x-axis, find the surface of the solid of revolution.

$${If}\:\:{ellipse}\:\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\left({a}>{b}\right) \\ $$$${is}\:{rotated}\:{about}\:{x}-{axis},\:{find}\:{the} \\ $$$${surface}\:{of}\:{the}\:{solid}\:{of}\:{revolution}. \\ $$

Question Number 87279    Answers: 3   Comments: 2

∫(x^2 /(1+x^4 ))dx

$$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 87185    Answers: 3   Comments: 0

∫((2x−1)/(x(x^2 +3)))dx

$$\int\frac{\mathrm{2}{x}−\mathrm{1}}{{x}\left({x}^{\mathrm{2}} +\mathrm{3}\right)}{dx} \\ $$

  Pg 183      Pg 184      Pg 185      Pg 186      Pg 187      Pg 188      Pg 189      Pg 190      Pg 191      Pg 192   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com