Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 187

Question Number 88206    Answers: 1   Comments: 0

∫ ((x+x^3 )/(1+x^4 )) dx

$$\int\:\:\frac{\mathrm{x}+\mathrm{x}^{\mathrm{3}} }{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\:\mathrm{dx}\: \\ $$

Question Number 88197    Answers: 0   Comments: 0

prove that ∫_0 ^1 (√(((x^2 −2)/(x^2 −1)) ))dx=((π(√(2π)))/(Γ^2 ((1/4))))+((Γ^2 ((1/4)))/(4(√(2π))))

$${prove}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{{x}^{\mathrm{2}} −\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{1}}\:}{dx}=\frac{\pi\sqrt{\mathrm{2}\pi}}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}+\frac{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}\sqrt{\mathrm{2}\pi}} \\ $$

Question Number 88196    Answers: 0   Comments: 0

Question Number 88194    Answers: 0   Comments: 4

find ∫(1/((√x)+(√(x+1))+(√(x+2)))) dx

$${find}\:\int\frac{\mathrm{1}}{\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}+\sqrt{{x}+\mathrm{2}}}\:{dx} \\ $$$$ \\ $$

Question Number 88181    Answers: 0   Comments: 1

Question Number 88177    Answers: 1   Comments: 0

prove that ∫_0 ^(2020) (x−[x])(√(x−[x])) dx=808

$${prove}\:{that} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2020}} \left({x}−\left[{x}\right]\right)\sqrt{{x}−\left[{x}\right]}\:{dx}=\mathrm{808} \\ $$

Question Number 88170    Answers: 0   Comments: 2

Prove that ∫_0 ^1 tcos nπtdt=(((−1)^n −1)/(n^2 π^2 ))

$${Prove}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {tcos}\:{n}\pi{tdt}=\frac{\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}}{{n}^{\mathrm{2}} \pi^{\mathrm{2}} } \\ $$

Question Number 88153    Answers: 0   Comments: 1

Question Number 88131    Answers: 1   Comments: 0

∫((x^2 +1)/(x−(√(1−2x))))dx

$$\int\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}−\sqrt{\mathrm{1}−\mathrm{2}{x}}}{dx} \\ $$

Question Number 88118    Answers: 1   Comments: 1

∫(dx/((x+1)×(√x)))

$$\int\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)×\sqrt{\mathrm{x}}} \\ $$

Question Number 88104    Answers: 1   Comments: 2

∫_0 ^(+∞) (√(3+e^(−2x) ))dx

$$\int_{\mathrm{0}} ^{+\infty} \sqrt{\mathrm{3}+{e}^{−\mathrm{2}{x}} }{dx} \\ $$

Question Number 88097    Answers: 1   Comments: 0

∫(dx/((2x−3)^(2/3) ))

$$\int\frac{\mathrm{dx}}{\left(\mathrm{2x}−\mathrm{3}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} } \\ $$

Question Number 88089    Answers: 1   Comments: 1

∫(e^x /(e^2 −9))dx

$$\int\frac{{e}^{{x}} }{{e}^{\mathrm{2}} −\mathrm{9}}{dx} \\ $$

Question Number 88071    Answers: 1   Comments: 7

Question Number 88069    Answers: 1   Comments: 2

Question Number 88064    Answers: 1   Comments: 0

∫ (dx/(cos x(2+sin x)))?

$$\int\:\frac{\mathrm{dx}}{\mathrm{cos}\:\mathrm{x}\left(\mathrm{2}+\mathrm{sin}\:\mathrm{x}\right)}? \\ $$

Question Number 88045    Answers: 0   Comments: 2

∫ ((sin x)/(2sin x+cos x)) dx

$$\int\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{2sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$

Question Number 88042    Answers: 1   Comments: 0

find max and min value of function f(x) = (5/(−3cos x−4sin x))

$$\mathrm{find}\:\mathrm{max}\:\mathrm{and}\:\mathrm{min}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{5}}{−\mathrm{3cos}\:\mathrm{x}−\mathrm{4sin}\:\mathrm{x}} \\ $$

Question Number 88033    Answers: 0   Comments: 4

find ∫_0 ^1 ((sin(x))/x)dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{sin}\left({x}\right)}{{x}}{dx} \\ $$

Question Number 88026    Answers: 0   Comments: 0

Question Number 88010    Answers: 0   Comments: 2

∫((x^2 +2x+3)/(√(x^2 +x+1)))dx

$$\int\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}}{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$

Question Number 88007    Answers: 1   Comments: 0

∫_0 ^1 (√((√((4/x)−3))−1))dx=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{\sqrt{\frac{\mathrm{4}}{{x}}−\mathrm{3}}−\mathrm{1}}{dx}=? \\ $$

Question Number 88003    Answers: 0   Comments: 2

Determine all functions f[0,1]→Ω such that ∀x∈[0,1] f ′(x)+f(x)=f(0)+f(1)

$${Determine}\:{all}\:{functions}\:{f}\left[\mathrm{0},\mathrm{1}\right]\rightarrow\Omega \\ $$$${such}\:{that}\:\forall{x}\in\left[\mathrm{0},\mathrm{1}\right]\:{f}\:'\left({x}\right)+{f}\left({x}\right)={f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right) \\ $$

Question Number 87996    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(3x)−arctanx)/x)dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{3}{x}\right)−{arctanx}}{{x}}{dx} \\ $$

Question Number 87995    Answers: 1   Comments: 0

find ∫ (dx/((x^2 −1)^2 (x^2 +2)))

$${find}\:\int\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} \:+\mathrm{2}\right)} \\ $$

Question Number 87994    Answers: 0   Comments: 0

vcalculate ∫_0 ^∞ ((arctan(2[x]+3))/(x^2 +9))dx

$${vcalculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}\left[{x}\right]+\mathrm{3}\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$

  Pg 182      Pg 183      Pg 184      Pg 185      Pg 186      Pg 187      Pg 188      Pg 189      Pg 190      Pg 191   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com