Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 187
Question Number 88206 Answers: 1 Comments: 0
$$\int\:\:\frac{\mathrm{x}+\mathrm{x}^{\mathrm{3}} }{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\:\mathrm{dx}\: \\ $$
Question Number 88197 Answers: 0 Comments: 0
$${prove}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{{x}^{\mathrm{2}} −\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{1}}\:}{dx}=\frac{\pi\sqrt{\mathrm{2}\pi}}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}+\frac{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}\sqrt{\mathrm{2}\pi}} \\ $$
Question Number 88196 Answers: 0 Comments: 0
Question Number 88194 Answers: 0 Comments: 4
$${find}\:\int\frac{\mathrm{1}}{\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}+\sqrt{{x}+\mathrm{2}}}\:{dx} \\ $$$$ \\ $$
Question Number 88181 Answers: 0 Comments: 1
Question Number 88177 Answers: 1 Comments: 0
$${prove}\:{that} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2020}} \left({x}−\left[{x}\right]\right)\sqrt{{x}−\left[{x}\right]}\:{dx}=\mathrm{808} \\ $$
Question Number 88170 Answers: 0 Comments: 2
$${Prove}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {tcos}\:{n}\pi{tdt}=\frac{\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}}{{n}^{\mathrm{2}} \pi^{\mathrm{2}} } \\ $$
Question Number 88153 Answers: 0 Comments: 1
Question Number 88131 Answers: 1 Comments: 0
$$\int\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}−\sqrt{\mathrm{1}−\mathrm{2}{x}}}{dx} \\ $$
Question Number 88118 Answers: 1 Comments: 1
$$\int\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)×\sqrt{\mathrm{x}}} \\ $$
Question Number 88104 Answers: 1 Comments: 2
$$\int_{\mathrm{0}} ^{+\infty} \sqrt{\mathrm{3}+{e}^{−\mathrm{2}{x}} }{dx} \\ $$
Question Number 88097 Answers: 1 Comments: 0
$$\int\frac{\mathrm{dx}}{\left(\mathrm{2x}−\mathrm{3}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} } \\ $$
Question Number 88089 Answers: 1 Comments: 1
$$\int\frac{{e}^{{x}} }{{e}^{\mathrm{2}} −\mathrm{9}}{dx} \\ $$
Question Number 88071 Answers: 1 Comments: 7
Question Number 88069 Answers: 1 Comments: 2
Question Number 88064 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{dx}}{\mathrm{cos}\:\mathrm{x}\left(\mathrm{2}+\mathrm{sin}\:\mathrm{x}\right)}? \\ $$
Question Number 88045 Answers: 0 Comments: 2
$$\int\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{2sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$
Question Number 88042 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{max}\:\mathrm{and}\:\mathrm{min}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{5}}{−\mathrm{3cos}\:\mathrm{x}−\mathrm{4sin}\:\mathrm{x}} \\ $$
Question Number 88033 Answers: 0 Comments: 4
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{sin}\left({x}\right)}{{x}}{dx} \\ $$
Question Number 88026 Answers: 0 Comments: 0
Question Number 88010 Answers: 0 Comments: 2
$$\int\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}}{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$
Question Number 88007 Answers: 1 Comments: 0
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{\sqrt{\frac{\mathrm{4}}{{x}}−\mathrm{3}}−\mathrm{1}}{dx}=? \\ $$
Question Number 88003 Answers: 0 Comments: 2
$${Determine}\:{all}\:{functions}\:{f}\left[\mathrm{0},\mathrm{1}\right]\rightarrow\Omega \\ $$$${such}\:{that}\:\forall{x}\in\left[\mathrm{0},\mathrm{1}\right]\:{f}\:'\left({x}\right)+{f}\left({x}\right)={f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right) \\ $$
Question Number 87996 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{3}{x}\right)−{arctanx}}{{x}}{dx} \\ $$
Question Number 87995 Answers: 1 Comments: 0
$${find}\:\int\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} \:+\mathrm{2}\right)} \\ $$
Question Number 87994 Answers: 0 Comments: 0
$${vcalculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}\left[{x}\right]+\mathrm{3}\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$
Pg 182 Pg 183 Pg 184 Pg 185 Pg 186 Pg 187 Pg 188 Pg 189 Pg 190 Pg 191
Terms of Service
Privacy Policy
Contact: info@tinkutara.com