Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 186

Question Number 87995    Answers: 1   Comments: 0

find ∫ (dx/((x^2 −1)^2 (x^2 +2)))

$${find}\:\int\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} \:+\mathrm{2}\right)} \\ $$

Question Number 87994    Answers: 0   Comments: 0

vcalculate ∫_0 ^∞ ((arctan(2[x]+3))/(x^2 +9))dx

$${vcalculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}\left[{x}\right]+\mathrm{3}\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$

Question Number 87993    Answers: 0   Comments: 1

calculate ∫_0 ^∞ (dx/((x+1)^2 (x+2)^2 (x+3)^2 ))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}+\mathrm{2}\right)^{\mathrm{2}} \left({x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$

Question Number 87977    Answers: 0   Comments: 2

∫_(−(π/2)) ^(π/2) ((sin 2x)/(1+2^x ))dx

$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\:\mathrm{2}{x}}{\mathrm{1}+\mathrm{2}^{{x}} }{dx} \\ $$

Question Number 87969    Answers: 1   Comments: 0

Question Number 87930    Answers: 0   Comments: 0

Question Number 87920    Answers: 0   Comments: 1

Question Number 87910    Answers: 0   Comments: 0

$$ \\ $$

Question Number 87903    Answers: 0   Comments: 0

find ∫_0 ^∞ ∫_0 ^∞ ((arctan(xy))/((x+y)^2 ))dxdy

$${find}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({xy}\right)}{\left({x}+{y}\right)^{\mathrm{2}} }{dxdy} \\ $$

Question Number 87902    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ∫_0 ^∞ (e^(−(x^2 +y^2 )) /((x+y)^2 ))dxdy

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} }{\left({x}+{y}\right)^{\mathrm{2}} }{dxdy} \\ $$

Question Number 87901    Answers: 0   Comments: 0

calculate ∫∫_([0,1]^2 ) ((arctan(x+y))/(x+y))dxdy

$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\frac{{arctan}\left({x}+{y}\right)}{{x}+{y}}{dxdy} \\ $$

Question Number 87893    Answers: 1   Comments: 0

∫ (√((sin x)/(sin x−cos x))) dx

$$\int\:\sqrt{\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}}\:\:\mathrm{dx}\: \\ $$

Question Number 87881    Answers: 1   Comments: 1

∫_(−∞) ^( +∞) (1/x) dx =

$$\:\int_{−\infty} ^{\:+\infty} \frac{\mathrm{1}}{{x}}\:{dx}\:=\: \\ $$

Question Number 87876    Answers: 0   Comments: 1

prove that Γ(z)=∫_0 ^∞ e^(−x) x^(z−1) dx,Re(z)>0

$${prove}\:{that} \\ $$$$\Gamma\left({z}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} \:{x}^{{z}−\mathrm{1}} \:{dx},{Re}\left({z}\right)>\mathrm{0} \\ $$

Question Number 87839    Answers: 1   Comments: 0

I = ∫_0 ^(π/4) ((sin 4x)/(cos^2 x (√(tan^4 x+1)))) dx

$$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{4x}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:\sqrt{\mathrm{tan}\:^{\mathrm{4}} \mathrm{x}+\mathrm{1}}}\:\mathrm{dx} \\ $$

Question Number 87815    Answers: 1   Comments: 3

I = ∫_0 ^(π/2) cos 2x(cos^4 x+sin^4 x) dx

$$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{cos}\:\mathrm{2x}\left(\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 87793    Answers: 2   Comments: 0

show that ∫e^(sin(x)) dx= −Σ_(n=0) ^∞ (1/(n!))[ cos(x)∗(sin(x))^(n+1) ∗[(sin(x))^2 ]^((((−n)/2)−(1/2))) ∗ 2F_1 [(1/2),((1−n)/2);(3/2);(cos(x))^2 ] ]+c notice\2F_1 is special function called hypergeometric function

$${show}\:{that} \\ $$$$\int{e}^{{sin}\left({x}\right)} \:{dx}= \\ $$$$−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\left[\:{cos}\left({x}\right)\ast\left({sin}\left({x}\right)\right)^{{n}+\mathrm{1}} \ast\left[\left({sin}\left({x}\right)\right)^{\mathrm{2}} \right]^{\left(\frac{−{n}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)} \ast\:\mathrm{2}{F}_{\mathrm{1}} \left[\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}−{n}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};\left({cos}\left({x}\right)\right)^{\mathrm{2}} \right]\:\right]+{c} \\ $$$$ \\ $$$${notice}\backslash\mathrm{2}{F}_{\mathrm{1}} \:{is}\:{special}\:{function}\:{called}\:{hypergeometric}\:{function} \\ $$

Question Number 87769    Answers: 2   Comments: 0

∫ ((ln(e^x +1))/(e^(−x) +1)) dx

$$\int\:\frac{\mathrm{ln}\left(\mathrm{e}^{\mathrm{x}} +\mathrm{1}\right)}{\mathrm{e}^{−\mathrm{x}} +\mathrm{1}}\:\mathrm{dx}\: \\ $$

Question Number 87757    Answers: 0   Comments: 2

∫_a ^b ((√(x−a))/(√(b−x))) dx =?

$$\int_{\mathrm{a}} ^{\mathrm{b}} \:\frac{\sqrt{\mathrm{x}−\mathrm{a}}}{\sqrt{\mathrm{b}−\mathrm{x}}}\:\mathrm{dx}\:=?\: \\ $$

Question Number 87723    Answers: 1   Comments: 0

∫((1/(x−1))+((Σ_(k=0) ^(2018) (k+1)x^k )/(Σ_(k=0) ^(2019) x^k )))dx

$$\int\left(\frac{\mathrm{1}}{{x}−\mathrm{1}}+\frac{\underset{{k}=\mathrm{0}} {\overset{\mathrm{2018}} {\sum}}\left({k}+\mathrm{1}\right){x}^{{k}} }{\underset{{k}=\mathrm{0}} {\overset{\mathrm{2019}} {\sum}}{x}^{{k}} }\right){dx} \\ $$

Question Number 87716    Answers: 1   Comments: 1

Question Number 87711    Answers: 1   Comments: 2

∫_0 ^∞ ((1−xe^(−x) −e^(−x) )/(x(e^x −e^(−x) )))dx

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{xe}^{−{x}} −{e}^{−{x}} }{{x}\left({e}^{{x}} −{e}^{−{x}} \right)}{dx} \\ $$

Question Number 87709    Answers: 0   Comments: 0

sbow that ∫_1 ^∞ (([3x])/(([x])!))dx=4e−1

$${sbow}\:{that} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\left[\mathrm{3}{x}\right]}{\left(\left[{x}\right]\right)!}{dx}=\mathrm{4}{e}−\mathrm{1} \\ $$

Question Number 87692    Answers: 0   Comments: 8

sir Ma?h+t?que you have posted ∫(dx/(((x+1)....(x+n))^2 ))=......can you reposted it please

$${sir}\:{Ma}?{h}+{t}?{que}\:{you}\:{have}\:{posted} \\ $$$$\int\frac{{dx}}{\left(\left({x}+\mathrm{1}\right)....\left({x}+{n}\right)\right)^{\mathrm{2}} }=......{can}\:{you}\:{reposted}\:{it}\:{please} \\ $$

Question Number 87686    Answers: 3   Comments: 0

∫(√((ln(x+(√(1+x^2 ))))/(1+x^2 ))) dx

$$\int\sqrt{\frac{{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx} \\ $$

Question Number 87669    Answers: 1   Comments: 4

∫_2 ^( e) ((1/(ln x))−(1/(ln^2 x))) dx?

$$\int_{\mathrm{2}} ^{\:\:\mathrm{e}} \left(\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{ln}^{\mathrm{2}} \mathrm{x}}\right)\:\mathrm{dx}? \\ $$

  Pg 181      Pg 182      Pg 183      Pg 184      Pg 185      Pg 186      Pg 187      Pg 188      Pg 189      Pg 190   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com