Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 186
Question Number 87995 Answers: 1 Comments: 0
$${find}\:\int\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} \:+\mathrm{2}\right)} \\ $$
Question Number 87994 Answers: 0 Comments: 0
$${vcalculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}\left[{x}\right]+\mathrm{3}\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$
Question Number 87993 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}+\mathrm{2}\right)^{\mathrm{2}} \left({x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$
Question Number 87977 Answers: 0 Comments: 2
$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\:\mathrm{2}{x}}{\mathrm{1}+\mathrm{2}^{{x}} }{dx} \\ $$
Question Number 87969 Answers: 1 Comments: 0
Question Number 87930 Answers: 0 Comments: 0
Question Number 87920 Answers: 0 Comments: 1
Question Number 87910 Answers: 0 Comments: 0
$$ \\ $$
Question Number 87903 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({xy}\right)}{\left({x}+{y}\right)^{\mathrm{2}} }{dxdy} \\ $$
Question Number 87902 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} }{\left({x}+{y}\right)^{\mathrm{2}} }{dxdy} \\ $$
Question Number 87901 Answers: 0 Comments: 0
$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\frac{{arctan}\left({x}+{y}\right)}{{x}+{y}}{dxdy} \\ $$
Question Number 87893 Answers: 1 Comments: 0
$$\int\:\sqrt{\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}}\:\:\mathrm{dx}\: \\ $$
Question Number 87881 Answers: 1 Comments: 1
$$\:\int_{−\infty} ^{\:+\infty} \frac{\mathrm{1}}{{x}}\:{dx}\:=\: \\ $$
Question Number 87876 Answers: 0 Comments: 1
$${prove}\:{that} \\ $$$$\Gamma\left({z}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} \:{x}^{{z}−\mathrm{1}} \:{dx},{Re}\left({z}\right)>\mathrm{0} \\ $$
Question Number 87839 Answers: 1 Comments: 0
$$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{4x}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:\sqrt{\mathrm{tan}\:^{\mathrm{4}} \mathrm{x}+\mathrm{1}}}\:\mathrm{dx} \\ $$
Question Number 87815 Answers: 1 Comments: 3
$$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{cos}\:\mathrm{2x}\left(\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}\right)\:\mathrm{dx} \\ $$
Question Number 87793 Answers: 2 Comments: 0
$${show}\:{that} \\ $$$$\int{e}^{{sin}\left({x}\right)} \:{dx}= \\ $$$$−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\left[\:{cos}\left({x}\right)\ast\left({sin}\left({x}\right)\right)^{{n}+\mathrm{1}} \ast\left[\left({sin}\left({x}\right)\right)^{\mathrm{2}} \right]^{\left(\frac{−{n}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)} \ast\:\mathrm{2}{F}_{\mathrm{1}} \left[\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}−{n}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};\left({cos}\left({x}\right)\right)^{\mathrm{2}} \right]\:\right]+{c} \\ $$$$ \\ $$$${notice}\backslash\mathrm{2}{F}_{\mathrm{1}} \:{is}\:{special}\:{function}\:{called}\:{hypergeometric}\:{function} \\ $$
Question Number 87769 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{ln}\left(\mathrm{e}^{\mathrm{x}} +\mathrm{1}\right)}{\mathrm{e}^{−\mathrm{x}} +\mathrm{1}}\:\mathrm{dx}\: \\ $$
Question Number 87757 Answers: 0 Comments: 2
$$\int_{\mathrm{a}} ^{\mathrm{b}} \:\frac{\sqrt{\mathrm{x}−\mathrm{a}}}{\sqrt{\mathrm{b}−\mathrm{x}}}\:\mathrm{dx}\:=?\: \\ $$
Question Number 87723 Answers: 1 Comments: 0
$$\int\left(\frac{\mathrm{1}}{{x}−\mathrm{1}}+\frac{\underset{{k}=\mathrm{0}} {\overset{\mathrm{2018}} {\sum}}\left({k}+\mathrm{1}\right){x}^{{k}} }{\underset{{k}=\mathrm{0}} {\overset{\mathrm{2019}} {\sum}}{x}^{{k}} }\right){dx} \\ $$
Question Number 87716 Answers: 1 Comments: 1
Question Number 87711 Answers: 1 Comments: 2
$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{xe}^{−{x}} −{e}^{−{x}} }{{x}\left({e}^{{x}} −{e}^{−{x}} \right)}{dx} \\ $$
Question Number 87709 Answers: 0 Comments: 0
$${sbow}\:{that} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\left[\mathrm{3}{x}\right]}{\left(\left[{x}\right]\right)!}{dx}=\mathrm{4}{e}−\mathrm{1} \\ $$
Question Number 87692 Answers: 0 Comments: 8
$${sir}\:{Ma}?{h}+{t}?{que}\:{you}\:{have}\:{posted} \\ $$$$\int\frac{{dx}}{\left(\left({x}+\mathrm{1}\right)....\left({x}+{n}\right)\right)^{\mathrm{2}} }=......{can}\:{you}\:{reposted}\:{it}\:{please} \\ $$
Question Number 87686 Answers: 3 Comments: 0
$$\int\sqrt{\frac{{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx} \\ $$
Question Number 87669 Answers: 1 Comments: 4
$$\int_{\mathrm{2}} ^{\:\:\mathrm{e}} \left(\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{ln}^{\mathrm{2}} \mathrm{x}}\right)\:\mathrm{dx}? \\ $$
Pg 181 Pg 182 Pg 183 Pg 184 Pg 185 Pg 186 Pg 187 Pg 188 Pg 189 Pg 190
Terms of Service
Privacy Policy
Contact: info@tinkutara.com