Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 165
Question Number 98311 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2}} }\mathrm{dx}\: \\ $$
Question Number 98305 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{3}} }\mathrm{dx} \\ $$
Question Number 98271 Answers: 2 Comments: 5
$$\mathcal{G}\mathrm{ivenU}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}} \sqrt{\mathrm{1}−\mathrm{x}}\mathrm{dx}\:\:\mathrm{n}\in\mathbb{N},\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{2}^{\mathrm{n}+\mathrm{2}} \mathrm{n}!\left(\mathrm{n}+\mathrm{1}\right)}{\left(\mathrm{2n}+\mathrm{3}\right)!} \\ $$
Question Number 98256 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{log}\left({x}\right)}{\sqrt{{x}}\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 98249 Answers: 0 Comments: 0
$$\mathrm{explicit}\:\mathrm{A}\left(\theta\right)\:=\int_{\mathrm{1}} ^{+\infty} \:\frac{\mathrm{ln}\left(\mathrm{lnx}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{2xcos}\theta\:+\mathrm{1}}\mathrm{dx}\:\:\:\mathrm{with}\:−\pi<\theta<\pi \\ $$
Question Number 98248 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{\mathrm{ln}\left(\mathrm{lnx}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 98246 Answers: 1 Comments: 0
$$\int\frac{{x}}{{sin}^{\mathrm{2}} \left({x}−\mathrm{3}\right)}{dx} \\ $$
Question Number 98245 Answers: 0 Comments: 0
$$\underset{{k}\rightarrow\mathrm{0}} {{lim}}\int_{\mathrm{0}} ^{{k}} \frac{\mathrm{1}}{\sqrt{{cos}\left({x}\right)−{cos}\left({k}\right)}}{dx}=? \\ $$
Question Number 98214 Answers: 2 Comments: 2
Question Number 98182 Answers: 2 Comments: 0
$$\mathrm{find}\:\int\:\mathrm{x}^{\mathrm{2}} \sqrt{\frac{\mathrm{2}−\mathrm{x}}{\mathrm{2}+\mathrm{x}}}\mathrm{dx} \\ $$
Question Number 98181 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2xcos}\theta\:+\mathrm{1}\right)\mathrm{d}\theta \\ $$
Question Number 98179 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$
Question Number 98151 Answers: 2 Comments: 0
$$\int{e}^{{x}^{\mathrm{5}} +\mathrm{8}{x}^{\mathrm{2}} } {dx} \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{4}\sqrt{\mathrm{2}}}{e}^{{x}^{\mathrm{5}} } {erfi}\left(\mathrm{2}\sqrt{\mathrm{2}}{x}\right)−\frac{\mathrm{5}\sqrt{\pi}}{\mathrm{4}\left(\mathrm{128}\right)\sqrt{\mathrm{2}}}\left({super}−{erf}_{\left({hyper}\right)} \left(\mathrm{2}\sqrt{\mathrm{2}}{x}\right)\right)+{c} \\ $$$$ \\ $$$${where}\left[{super}−{erf}_{\left({hyper}\right)} \left({t}\right)\right]\:{is}\:{super}−{function} \\ $$$${in}\:{D}_{\mathrm{2}} \:{and}\:\left[{D}_{{n}} \right] \\ $$
Question Number 98105 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{3}} ^{+\infty} \:\:\:\frac{\left(\mathrm{x}+\mathrm{1}\right)\mathrm{dx}}{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} \left(\:\mathrm{2x}+\mathrm{3}\right)^{\mathrm{3}} } \\ $$
Question Number 98020 Answers: 1 Comments: 0
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{region}\:\mathrm{bounded} \\ $$$$\mathrm{by}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:\leqslant\:\mathrm{9}\:;\:\mathrm{x}+\mathrm{y}\:\leqslant\:\mathrm{3}\:\mathrm{and}\:\mathrm{y}\:\leqslant\:\mathrm{x}\: \\ $$
Question Number 98016 Answers: 1 Comments: 3
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{ln}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx}\:?\: \\ $$
Question Number 97928 Answers: 1 Comments: 0
$${find}\:{the}\:{general}\:{formula} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {tan}^{\alpha} \left({x}\right)\:{dx} \\ $$
Question Number 97839 Answers: 3 Comments: 1
$$\mathrm{calculate}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\frac{\mathrm{n}\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{3cos}^{\mathrm{4}} \mathrm{x}\:+\mathrm{3sin}^{\mathrm{4}} \mathrm{x}−\mathrm{1}} \\ $$
Question Number 97800 Answers: 3 Comments: 0
$$\left.\mathrm{1}\right)\:\mathrm{findf}\left(\mathrm{a}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{a}}\mathrm{dx}\:\:\:\:\:\mathrm{with}\:\mathrm{a}>\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\mathrm{explicite}\:\mathrm{g}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{a}}}\: \\ $$$$\left.\mathrm{3}\right)\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}\:+\mathrm{3}}} \\ $$
Question Number 97794 Answers: 1 Comments: 3
$$\mathrm{solve}\:\mathrm{y}^{''} \:+\mathrm{y}\:=\frac{\mathrm{1}}{\mathrm{cosx}} \\ $$
Question Number 97782 Answers: 2 Comments: 1
$${Evaluate}: \\ $$$$\int\:\frac{{sinx}}{\mathrm{1}\:+{sin}^{\mathrm{2}} {x}}{dx} \\ $$
Question Number 97759 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{sin}\:^{\mathrm{5}} \left({x}\right)\:{dx}}{\sqrt{\mathrm{cos}\:\left({x}\right)}}\:? \\ $$
Question Number 97721 Answers: 1 Comments: 3
Question Number 97892 Answers: 1 Comments: 0
Question Number 97707 Answers: 3 Comments: 0
Question Number 97683 Answers: 3 Comments: 3
$$\:\mathrm{Evaluate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\sqrt{\mathrm{16}\:+\:\mathrm{9}{x}^{\mathrm{2}} }}\:{dx} \\ $$
Pg 160 Pg 161 Pg 162 Pg 163 Pg 164 Pg 165 Pg 166 Pg 167 Pg 168 Pg 169
Terms of Service
Privacy Policy
Contact: info@tinkutara.com