Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 164
Question Number 100513 Answers: 0 Comments: 0
$$\mathrm{findA}_{\mathrm{nm}} \:=\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{e}^{−\mathrm{nx}} \:\mid\mathrm{sin}\left(\mathrm{px}\right)\mid\:\mathrm{dx}\:\:\mathrm{with}\:\:\mathrm{n}\:\mathrm{and}\:\mathrm{p}\:\mathrm{integr}\:\mathrm{natural}\:\geqslant\mathrm{1} \\ $$
Question Number 100512 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{x}^{\mathrm{n}} }{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}\right)^{\mathrm{n}} }\:\mathrm{dx}\:\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{and}\:\mathrm{n}\geqslant\mathrm{2} \\ $$
Question Number 100511 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\:\int_{−\infty} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{cosx}\:+\mathrm{sinx}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}}\:\mathrm{dx} \\ $$
Question Number 100468 Answers: 3 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}}{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$${help}\:{me}\:{pls} \\ $$
Question Number 100450 Answers: 1 Comments: 0
Question Number 100438 Answers: 0 Comments: 5
$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{{x}} {x}^{\mathrm{2}} {y}^{{xy}} {dydx} \\ $$
Question Number 100362 Answers: 3 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} {e}^{\mathrm{2}{x}+{y}} {dydx} \\ $$
Question Number 100368 Answers: 1 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\int_{−\infty} ^{\infty} \mathrm{cos}\:\left({x}^{{n}} \right)\:{dx}\:=? \\ $$$${where}\:{n}=\mathrm{2}{k},\:{k}\in\mathbb{N},\:{k}\neq\mathrm{0} \\ $$
Question Number 100216 Answers: 1 Comments: 2
$$\mathrm{if}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x}}{dx}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}}{dx}\: \\ $$$$\mathrm{then}\:{I}\:=\:?? \\ $$
Question Number 100215 Answers: 2 Comments: 1
$$\mathrm{evaluate}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{1}} ^{{e}} {x}^{{n}} \mathrm{ln}\:{x}\:{dx}\: \\ $$
Question Number 100207 Answers: 0 Comments: 2
$$\mathrm{Given}\:\mathrm{an}\:\mathrm{even}\:\mathrm{fuction}\:{f}\left({x}\right)\:\mathrm{such}\:\mathrm{that}\:\overset{{a}} {\int}_{−{a}} \:{f}\left({x}\right){dx}\:=\:\sqrt{{a}}\:\forall{a}\:\geqslant\mathrm{0} \\ $$$$\mathrm{find}\:\int_{\mathrm{3}} ^{\mathrm{4}} {f}\left({x}\right)\:{dx} \\ $$$$ \\ $$
Question Number 100191 Answers: 1 Comments: 1
$$\int\:{x}^{\mathrm{2}} \:{e}^{{x}} \:{dx}\:? \\ $$
Question Number 100190 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{{x}^{{x}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{1}−{x}} }−\frac{\left(\mathrm{1}−{x}\right)^{\mathrm{1}−{x}} }{{x}^{{x}} }\right){dx} \\ $$
Question Number 100189 Answers: 1 Comments: 0
$$\int{tan}^{{i}} {xdx} \\ $$
Question Number 100114 Answers: 1 Comments: 0
Question Number 100089 Answers: 0 Comments: 0
$$\:\mathrm{calculate}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{sin}^{\mathrm{n}} \left(\mathrm{x}\right)}{\mathrm{sin}\left(\mathrm{nx}\right)}\mathrm{dx}\: \\ $$
Question Number 100088 Answers: 1 Comments: 1
$$\mathrm{calculate}\:\int\:\frac{\mathrm{cosx}}{\mathrm{cos}\left(\mathrm{3x}\right)}\mathrm{dx} \\ $$
Question Number 100054 Answers: 1 Comments: 0
$${I}_{{n},{m}} =\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left({ln}\left({x}\right)\right)^{{n}} \left({ln}\left({y}\right)\right)^{{m}} }{\mathrm{1}−{xy}}{dx}\:{dy} \\ $$
Question Number 100047 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$
Question Number 100026 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{e}^{−\mathrm{sec}^{\mathrm{2}} \theta} \mathrm{d}\theta \\ $$
Question Number 99831 Answers: 0 Comments: 0
$$\mathrm{solve}\:\mathrm{the}\:\mathrm{ds}\:\:\:\begin{cases}{\mathrm{x}^{'} \:+\mathrm{2y}^{'} \:=\mathrm{sint}}\\{\mathrm{3x}^{'} +\mathrm{y}^{'} \:=\mathrm{te}^{\mathrm{t}} }\end{cases} \\ $$
Question Number 99824 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{arctan}\left(\frac{\mathrm{2}}{\mathrm{x}}\right)\mathrm{dx} \\ $$
Question Number 99820 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{dx}}{\left(\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 99818 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }\right)\mathrm{dx} \\ $$
Question Number 99779 Answers: 1 Comments: 2
Question Number 99707 Answers: 4 Comments: 1
$$\int_{−\infty} ^{\infty} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx}=? \\ $$
Pg 159 Pg 160 Pg 161 Pg 162 Pg 163 Pg 164 Pg 165 Pg 166 Pg 167 Pg 168
Terms of Service
Privacy Policy
Contact: info@tinkutara.com