Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 154

Question Number 108283    Answers: 1   Comments: 0

Given the function Γ defined by Γ(x)=∫_0 ^(+∞) t^(x−1) e^(−t) dt 1. What is the domain of definition of Γ ? 2. Show that ∀x∈ DΓ, xΓ(x)=Γ(x+1) and deduce the value of Γ(n), n∈N^∗ 3. Assuming ∫_0 ^(+∞) e^(−u^2 ) =((√π)/2), calculate Γ((1/2)) and deduce that Γ(n+(1/2))=(((2n)!(√π))/(2^2^n n!))

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:\Gamma\:\mathrm{defined}\:\mathrm{by}\:\Gamma\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{+\infty} \mathrm{t}^{\mathrm{x}−\mathrm{1}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt} \\ $$$$\mathrm{1}.\:\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{definition}\:\mathrm{of}\:\Gamma\:? \\ $$$$\mathrm{2}.\:\:\mathrm{Show}\:\mathrm{that}\:\forall\mathrm{x}\in\:\mathrm{D}\Gamma,\:\mathrm{x}\Gamma\left(\mathrm{x}\right)=\Gamma\left(\mathrm{x}+\mathrm{1}\right)\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\Gamma\left(\mathrm{n}\right),\:\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\mathrm{3}.\:\:\mathrm{Assuming}\:\int_{\mathrm{0}} ^{+\infty} \mathrm{e}^{−\mathrm{u}^{\mathrm{2}} } =\frac{\sqrt{\pi}}{\mathrm{2}},\:\mathrm{calculate}\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{that} \\ $$$$\:\:\:\:\:\Gamma\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\left(\mathrm{2n}\right)!\sqrt{\pi}}{\mathrm{2}^{\mathrm{2}^{\mathrm{n}} } \mathrm{n}!} \\ $$

Question Number 108282    Answers: 0   Comments: 0

Determine the nature of the integral ∫_2 ^(+∞) (√(t^2 +3t)) ln(cos((1/t))) sin^2 ((1/(ln(t))))dt

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\int_{\mathrm{2}} ^{+\infty} \sqrt{\mathrm{t}^{\mathrm{2}} +\mathrm{3t}}\:\mathrm{ln}\left(\mathrm{cos}\left(\frac{\mathrm{1}}{\mathrm{t}}\right)\right)\:\mathrm{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{ln}\left(\mathrm{t}\right)}\right)\mathrm{dt} \\ $$

Question Number 108175    Answers: 1   Comments: 3

Question Number 108169    Answers: 1   Comments: 0

((✓BeMath✓)/(≻≺)) ∫ ((x^5 −x)/(x^8 −1)) dx ?

$$\:\:\:\:\:\:\frac{\checkmark\mathcal{B}{e}\mathcal{M}{ath}\checkmark}{\succ\prec} \\ $$$$\int\:\frac{{x}^{\mathrm{5}} −{x}}{{x}^{\mathrm{8}} −\mathrm{1}}\:{dx}\:? \\ $$

Question Number 108144    Answers: 0   Comments: 0

∫ (√(ln(x)))dx

$$\int\:\sqrt{{ln}\left({x}\right)}{dx} \\ $$

Question Number 108099    Answers: 3   Comments: 1

((★BeMath⊚)/⊓) (1) ∫ x tan^(−1) (x) dx ? (2) Find the distance of the point (3,3,1) from the plane Π with equation (r^→ −i^→ −j^→ )•(i^→ −j^→ +k^→ ) = 0 , also find the point on the plane that is nearest to (3,3,1).

$$\:\:\:\:\frac{\bigstar\mathcal{B}{e}\mathcal{M}{ath}\circledcirc}{\sqcap} \\ $$$$\:\left(\mathrm{1}\right)\:\int\:{x}\:\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\:{dx}\:? \\ $$$$\left(\mathrm{2}\right)\:{Find}\:{the}\:{distance}\:{of}\:{the}\:{point}\: \\ $$$$\left(\mathrm{3},\mathrm{3},\mathrm{1}\right)\:{from}\:{the}\:{plane}\:\Pi\:{with}\:{equation} \\ $$$$\left(\overset{\rightarrow} {{r}}−\overset{\rightarrow} {{i}}−\overset{\rightarrow} {{j}}\right)\bullet\left(\overset{\rightarrow} {{i}}−\overset{\rightarrow} {{j}}+\overset{\rightarrow} {{k}}\right)\:=\:\mathrm{0}\:,\:{also}\: \\ $$$${find}\:{the}\:{point}\:{on}\:{the}\:{plane}\:{that}\:{is} \\ $$$${nearest}\:{to}\:\left(\mathrm{3},\mathrm{3},\mathrm{1}\right). \\ $$$$ \\ $$

Question Number 108095    Answers: 3   Comments: 0

((∞BeMath∞)/♠) ∫ 2x cos^(−1) (x) dx

$$\:\:\:\frac{\infty\mathcal{B}{e}\mathcal{M}{ath}\infty}{\spadesuit} \\ $$$$\:\:\:\int\:\mathrm{2}{x}\:\mathrm{cos}^{−\mathrm{1}} \left({x}\right)\:{dx}\: \\ $$

Question Number 108076    Answers: 0   Comments: 0

can someone please show how to get ∫_0 ^π sin (a sin (x)) dx=πH_0 (a) where H_0 (a) is the Struve−H−Function

$$\mathrm{can}\:\mathrm{someone}\:\mathrm{please}\:\mathrm{show}\:\mathrm{how}\:\mathrm{to}\:\mathrm{get} \\ $$$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\mathrm{sin}\:\left({a}\:\mathrm{sin}\:\left({x}\right)\right)\:{dx}=\pi\mathrm{H}_{\mathrm{0}} \:\left({a}\right) \\ $$$$\mathrm{where}\:\mathrm{H}_{\mathrm{0}} \:\left({a}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{Struve}−\mathrm{H}−\mathrm{Function} \\ $$

Question Number 108073    Answers: 3   Comments: 0

((≜BeMath≜)/≺) ∫ ((x dx)/(x^8 −1)) ?

$$\:\:\:\:\frac{\triangleq\mathcal{B}{e}\mathcal{M}{ath}\triangleq}{\prec} \\ $$$$\:\:\int\:\frac{{x}\:{dx}}{{x}^{\mathrm{8}} −\mathrm{1}}\:? \\ $$

Question Number 107965    Answers: 2   Comments: 0

((⊚BeMath⊚)/) ∫ x (√(x/(2a−x))) dx ?

$$\:\:\:\:\frac{\circledcirc\mathcal{B}{e}\mathcal{M}{ath}\circledcirc}{} \\ $$$$\int\:{x}\:\sqrt{\frac{{x}}{\mathrm{2}{a}−{x}}}\:{dx}\:?\: \\ $$

Question Number 107877    Answers: 0   Comments: 0

Question Number 107859    Answers: 0   Comments: 0

find A_n =∫_0 ^1 x^n (√(1+x+x^2 ))dx (n natural)

$$\mathrm{find}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{n}} \sqrt{\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\left(\mathrm{n}\:\mathrm{natural}\right) \\ $$

Question Number 107858    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((ln(1+x^2 ))/(1+x^4 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\mathrm{dx} \\ $$

Question Number 107855    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((lnx)/((1+x)^4 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnx}}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{4}} }\mathrm{dx}\: \\ $$

Question Number 107790    Answers: 4   Comments: 5

∫_0 ^1 ln(1+x^2 )dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$

Question Number 107756    Answers: 2   Comments: 0

((BeMath)/∐) ∫ x^2 ln (x^2 +3) dx

$$\:\frac{\mathcal{B}{e}\mathcal{M}{ath}}{\coprod} \\ $$$$\:\int\:{x}^{\mathrm{2}} \:\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{3}\right)\:{dx}\: \\ $$

Question Number 107706    Answers: 4   Comments: 0

✓BeMath✓ (1) ∫_0 ^∞ ((√x)/(1+x^3 )) dx ? (2) lim_(x→0) ((sin (π cos^2 x))/x^2 ) (3) If g(x)= 1+(√x) and (g○f)(x)=3+2(√x) +x find f(x)

$$\:\:\:\:\:\:\:\:\:\:\:\:\checkmark\mathcal{B}{e}\mathcal{M}{ath}\checkmark \\ $$$$\:\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{\sqrt{{x}}}{\mathrm{1}+{x}^{\mathrm{3}} }\:{dx}\:? \\ $$$$\:\:\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\pi\:\mathrm{cos}\:^{\mathrm{2}} {x}\right)}{{x}^{\mathrm{2}} }\: \\ $$$$\left(\mathrm{3}\right)\:{If}\:{g}\left({x}\right)=\:\mathrm{1}+\sqrt{{x}}\:{and}\:\left({g}\circ{f}\right)\left({x}\right)=\mathrm{3}+\mathrm{2}\sqrt{{x}}\:+{x} \\ $$$$\:\:\:{find}\:{f}\left({x}\right) \\ $$

Question Number 107695    Answers: 1   Comments: 0

♠BeMath♠ ∫_0 ^1 ((x−1)/((x+1)ln x)) dx ?

$$\:\:\:\spadesuit\mathcal{B}{e}\mathcal{M}{ath}\spadesuit \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{x}−\mathrm{1}}{\left({x}+\mathrm{1}\right)\mathrm{ln}\:{x}}\:{dx}\:?\: \\ $$

Question Number 107656    Answers: 3   Comments: 0

Question Number 107624    Answers: 0   Comments: 0

please prove: A,B,C are angles of triangle. Σ_(cylic) ((sinA+sinB)/(cosc))≥8cos(A/2)cos(B/2)cos(C/2)

$$\:\:\:\:\:\:\:{please}\:{prove}: \\ $$$$\:\mathrm{A},\mathrm{B},{C}\:\:{are}\:{angles}\:{of} \\ $$$${triangle}. \\ $$$$\underset{{cylic}} {\sum}\frac{{sinA}+{sinB}}{{cosc}}\geqslant\mathrm{8}{cos}\frac{{A}}{\mathrm{2}}{cos}\frac{{B}}{\mathrm{2}}{cos}\frac{{C}}{\mathrm{2}}\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 107596    Answers: 2   Comments: 0

Given I_(m,n) = ∫_1 ^e x^m (ln x)^n dx where m,n ∈ N^∗ Show that (1 + m)I_(m,n) = e^(m+1) −nI_(m,n−1) for m >0 and n>0 also, evaluate I_(2,3)

$$\mathrm{Given}\: \\ $$$$\:{I}_{{m},{n}} \:=\:\underset{\mathrm{1}} {\overset{{e}} {\int}}{x}^{{m}} \:\left(\mathrm{ln}\:{x}\right)^{{n}} \:{dx}\:\mathrm{where}\:{m},{n}\:\in\:\mathbb{N}^{\ast} \\ $$$$\mathrm{Show}\:\mathrm{that}\:\left(\mathrm{1}\:+\:{m}\right){I}_{{m},{n}} \:=\:{e}^{{m}+\mathrm{1}} −{nI}_{{m},{n}−\mathrm{1}} \:\mathrm{for}\:{m}\:>\mathrm{0}\:\mathrm{and}\:{n}>\mathrm{0} \\ $$$$\mathrm{also},\:\mathrm{evaluate}\:{I}_{\mathrm{2},\mathrm{3}} \\ $$

Question Number 107591    Answers: 2   Comments: 2

Question Number 107567    Answers: 3   Comments: 0

∫(√(3x^2 −2x)) dx

$$\int\sqrt{\mathrm{3x}^{\mathrm{2}} −\mathrm{2x}}\:\mathrm{dx} \\ $$

Question Number 107515    Answers: 2   Comments: 0

∫(x^4 /(1+x^8 ))dx

$$\int\frac{{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{8}} }{dx} \\ $$

Question Number 107342    Answers: 1   Comments: 0

Evaluate: χ:=∫_0 ^( (π/4)) x^2 tan(x)dx= ??? ★prepared by:★ ♣♣♣ M.N ♣♣♣

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathscr{E}{valuate}: \\ $$$$\:\:\:\:\:\:\:\chi:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {x}^{\mathrm{2}} {tan}\left({x}\right){dx}=\:???\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\bigstar{prepared}\:{by}:\bigstar \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\clubsuit\clubsuit\clubsuit\:\:\:\mathscr{M}.\mathscr{N}\:\clubsuit\clubsuit\clubsuit \\ $$$$ \\ $$

Question Number 107314    Answers: 2   Comments: 0

⌆bemath⌆ ∫_0 ^(2π) ln (1+sin x) dx ?

$$\:\:\:\:\:\:\:\:\doublebarwedge{bemath}\doublebarwedge \\ $$$$\:\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\:\mathrm{ln}\:\left(\mathrm{1}+\mathrm{sin}\:{x}\right)\:{dx}\:? \\ $$

  Pg 149      Pg 150      Pg 151      Pg 152      Pg 153      Pg 154      Pg 155      Pg 156      Pg 157      Pg 158   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com