Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 154

Question Number 106392    Answers: 0   Comments: 0

∫_0 ^∞ (√((2t+3)/(5t^3 +3t^2 +2)))dt

$$\int_{\mathrm{0}} ^{\infty} \sqrt{\frac{\mathrm{2t}+\mathrm{3}}{\mathrm{5t}^{\mathrm{3}} +\mathrm{3t}^{\mathrm{2}} +\mathrm{2}}}\mathrm{dt} \\ $$

Question Number 106391    Answers: 1   Comments: 0

∫e^(2x^2 +x) dx

$$\int\mathrm{e}^{\mathrm{2x}^{\mathrm{2}} +\mathrm{x}} \mathrm{dx} \\ $$

Question Number 106365    Answers: 2   Comments: 1

help Σ_(n=1) ^∞ (1/((2n−1)!))

$$\mathrm{help} \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2n}−\mathrm{1}\right)!} \\ $$

Question Number 106285    Answers: 2   Comments: 0

∫_0 ^∞ e^(−x^2 ) dx ?

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx}\:? \\ $$

Question Number 106232    Answers: 0   Comments: 0

find ∫ cos^n x ch(nx)dx /with n integr

$$\mathrm{find}\:\int\:\mathrm{cos}^{\mathrm{n}} \mathrm{x}\:\mathrm{ch}\left(\mathrm{nx}\right)\mathrm{dx}\:/\mathrm{with}\:\mathrm{n}\:\mathrm{integr} \\ $$

Question Number 106148    Answers: 2   Comments: 0

(1)∫ sec^(−1) x^2 dx (2) ∫(√(x+2)) sin^(−1) (√(3x−1)) dx

$$\left(\mathrm{1}\right)\int\:{sec}^{−\mathrm{1}} {x}^{\mathrm{2}} {dx} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\int\sqrt{{x}+\mathrm{2}}\:\:{sin}^{−\mathrm{1}} \sqrt{\mathrm{3}{x}−\mathrm{1}}\:{dx} \\ $$

Question Number 106132    Answers: 0   Comments: 0

find ∫_(−∞) ^(+∞) x^2 e^(−x^2 ) ln(1+x^2 )dx

$$\mathrm{find}\:\int_{−\infty} ^{+\infty} \:\mathrm{x}^{\mathrm{2}} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$$$ \\ $$

Question Number 106125    Answers: 2   Comments: 0

∫_(π/4) ^π (√(1−sin2x)) dx

$$\int_{\frac{\pi}{\mathrm{4}}} ^{\pi} \sqrt{\mathrm{1}−\mathrm{sin2}{x}}\:\mathrm{d}{x} \\ $$

Question Number 106120    Answers: 1   Comments: 3

question 106075 again ∫((1+cosx)/((99cosx−70sinx+210)cosx−66sinx+110))dx=? using t=tan(x/2) I get −4∫(dt/(t^4 +8t^3 −22t^2 +272t−419)) can someone factorize the denominator?

$${question}\:\mathrm{106075}\:{again} \\ $$$$\int\frac{\mathrm{1}+{cosx}}{\left(\mathrm{99}{cosx}−\mathrm{70}{sinx}+\mathrm{210}\right){cosx}−\mathrm{66}{sinx}+\mathrm{110}}{dx}=? \\ $$$${using}\:{t}={tan}\left({x}/\mathrm{2}\right)\:{I}\:{get} \\ $$$$−\mathrm{4}\int\frac{{dt}}{{t}^{\mathrm{4}} +\mathrm{8}{t}^{\mathrm{3}} −\mathrm{22}{t}^{\mathrm{2}} +\mathrm{272}{t}−\mathrm{419}} \\ $$$${can}\:{someone}\:{factorize}\:{the}\:{denominator}? \\ $$

Question Number 106075    Answers: 1   Comments: 0

∫((1+cosx)/((99cosx−70sinx+210)cosx−66sinx+110))dx=?

$$\int\frac{\mathrm{1}+{cosx}}{\left(\mathrm{99}{cosx}−\mathrm{70}{sinx}+\mathrm{210}\right){cosx}−\mathrm{66}{sinx}+\mathrm{110}}{dx}=? \\ $$

Question Number 106010    Answers: 1   Comments: 0

∫ ((1+x+x^2 )/(x^2 (x+1))) dx

$$\int\:\frac{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)}\:{dx}\: \\ $$

Question Number 106001    Answers: 2   Comments: 0

Question Number 105983    Answers: 1   Comments: 1

∫ ((sin x dx)/(6−sin^2 x)) ?

$$\int\:\frac{\mathrm{sin}\:{x}\:{dx}}{\mathrm{6}−\mathrm{sin}\:^{\mathrm{2}} {x}}\:?\:\: \\ $$

Question Number 105969    Answers: 3   Comments: 0

∫((sinx+cosx)/(√(1+sin2x)))dx

$$\int\frac{\mathrm{sinx}+\mathrm{cosx}}{\sqrt{\mathrm{1}+\mathrm{sin2x}}}\mathrm{dx} \\ $$

Question Number 105951    Answers: 2   Comments: 0

Question Number 105940    Answers: 1   Comments: 0

∫_0 ^1 log(tanθ)dθ

$$\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left({tan}\theta\right){d}\theta \\ $$

Question Number 105862    Answers: 3   Comments: 1

∫ (dx/(9+16cos^2 x)) ?

$$\int\:\frac{{dx}}{\mathrm{9}+\mathrm{16cos}\:^{\mathrm{2}} {x}}\:? \\ $$

Question Number 105815    Answers: 1   Comments: 0

Question Number 105781    Answers: 1   Comments: 1

Please, I need help. Exercise We have : J_n = ∫_0 ^( (π/4)) tan^n (x) dx 1) Establish a recurrence relation between J_(n+2) and J_n . 2) Calculate J_0 and J_1 , then deduce the expression of J_n as a function of n. The deduction of the last question, please.

$$\mathrm{Please},\:\mathrm{I}\:\mathrm{need}\:\mathrm{help}. \\ $$$$\mathrm{Exercise} \\ $$$$\mathrm{We}\:\mathrm{have}\:: \\ $$$$\mathrm{J}_{\mathrm{n}} =\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \mathrm{tan}^{\mathrm{n}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Establish}\:\mathrm{a}\:\mathrm{recurrence}\:\mathrm{relation} \\ $$$$\mathrm{between}\:\boldsymbol{\mathrm{J}}_{\boldsymbol{\mathrm{n}}+\mathrm{2}} \:\mathrm{and}\:\boldsymbol{\mathrm{J}}_{\boldsymbol{\mathrm{n}}} . \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Calculate}\:\boldsymbol{\mathrm{J}}_{\mathrm{0}} \:\mathrm{and}\:\boldsymbol{\mathrm{J}}_{\mathrm{1}} ,\:\mathrm{then} \\ $$$$\mathrm{deduce}\:\mathrm{the}\:\mathrm{expression}\:\mathrm{of}\:\boldsymbol{\mathrm{J}}_{\boldsymbol{\mathrm{n}}} \:\mathrm{as}\:\mathrm{a} \\ $$$$\mathrm{function}\:\mathrm{of}\:\boldsymbol{\mathrm{n}}. \\ $$$$\mathrm{The}\:\mathrm{deduction}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last} \\ $$$$\mathrm{question},\:\mathrm{please}. \\ $$

Question Number 105755    Answers: 2   Comments: 0

∫ (dx/(√(x(√x) −x^2 ))) ?

$$\int\:\frac{{dx}}{\sqrt{{x}\sqrt{{x}}\:−{x}^{\mathrm{2}} }}\:? \\ $$

Question Number 105753    Answers: 1   Comments: 1

∫ ((x^2 +sin^2 x)/(x^2 +cos^2 x)) dx

$$\int\:\frac{{x}^{\mathrm{2}} +\mathrm{sin}\:^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} +\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx}\: \\ $$

Question Number 105743    Answers: 1   Comments: 1

Question Number 105722    Answers: 4   Comments: 1

∫ (√(x−(√x))) dx

$$\int\:\sqrt{{x}−\sqrt{{x}}}\:{dx}\: \\ $$

Question Number 105700    Answers: 1   Comments: 0

∫_(−π) ^π ((x^2 dx)/(1+sin (sin x)+(√(1+sin^2 (sin x)))))

$$\underset{−\pi} {\overset{\pi} {\int}}\:\frac{{x}^{\mathrm{2}} \:{dx}}{\mathrm{1}+\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)+\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{sin}\:{x}\right)}} \\ $$$$ \\ $$

Question Number 105673    Answers: 2   Comments: 0

Question Number 105574    Answers: 1   Comments: 0

∫ ((x−1)/(x+x^2 ln x)) dx ?

$$\int\:\frac{{x}−\mathrm{1}}{{x}+{x}^{\mathrm{2}} \mathrm{ln}\:{x}}\:{dx}\:?\: \\ $$

  Pg 149      Pg 150      Pg 151      Pg 152      Pg 153      Pg 154      Pg 155      Pg 156      Pg 157      Pg 158   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com