Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 154
Question Number 107596 Answers: 2 Comments: 0
$$\mathrm{Given}\: \\ $$$$\:{I}_{{m},{n}} \:=\:\underset{\mathrm{1}} {\overset{{e}} {\int}}{x}^{{m}} \:\left(\mathrm{ln}\:{x}\right)^{{n}} \:{dx}\:\mathrm{where}\:{m},{n}\:\in\:\mathbb{N}^{\ast} \\ $$$$\mathrm{Show}\:\mathrm{that}\:\left(\mathrm{1}\:+\:{m}\right){I}_{{m},{n}} \:=\:{e}^{{m}+\mathrm{1}} −{nI}_{{m},{n}−\mathrm{1}} \:\mathrm{for}\:{m}\:>\mathrm{0}\:\mathrm{and}\:{n}>\mathrm{0} \\ $$$$\mathrm{also},\:\mathrm{evaluate}\:{I}_{\mathrm{2},\mathrm{3}} \\ $$
Question Number 107591 Answers: 2 Comments: 2
Question Number 107567 Answers: 3 Comments: 0
$$\int\sqrt{\mathrm{3x}^{\mathrm{2}} −\mathrm{2x}}\:\mathrm{dx} \\ $$
Question Number 107515 Answers: 2 Comments: 0
$$\int\frac{{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{8}} }{dx} \\ $$
Question Number 107342 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathscr{E}{valuate}: \\ $$$$\:\:\:\:\:\:\:\chi:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {x}^{\mathrm{2}} {tan}\left({x}\right){dx}=\:???\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\bigstar{prepared}\:{by}:\bigstar \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\clubsuit\clubsuit\clubsuit\:\:\:\mathscr{M}.\mathscr{N}\:\clubsuit\clubsuit\clubsuit \\ $$$$ \\ $$
Question Number 107314 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\doublebarwedge{bemath}\doublebarwedge \\ $$$$\:\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\:\mathrm{ln}\:\left(\mathrm{1}+\mathrm{sin}\:{x}\right)\:{dx}\:? \\ $$
Question Number 107291 Answers: 1 Comments: 0
$$\mathrm{let}\:\mathrm{x}\in\mathrm{R}−\left\{\mathrm{1},−\mathrm{1}\right\}\:\mathrm{explicit}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\mathrm{ln}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2xcos}\theta\:+\mathrm{1}\right)\mathrm{d}\theta \\ $$$$ \\ $$
Question Number 107286 Answers: 1 Comments: 0
$$\mathrm{let}\:\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:=\mathrm{ne}^{−\mathrm{nx}} \:\:\mathrm{calculate}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\mathrm{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx}\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{uniform}\:\mathrm{on}\:\left[\mathrm{0},\mathrm{1}\right]? \\ $$
Question Number 107285 Answers: 0 Comments: 0
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{arctan}\left(\mathrm{2x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 107283 Answers: 0 Comments: 0
$$\mathrm{f}\:\mathrm{integrable}\:\mathrm{continue}\:\mathrm{on}\:\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{let}\:\mathrm{m}\:=\mathrm{inf}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{M}=\mathrm{sup}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\left(\mathrm{x}\:\in\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{prove}\:\mathrm{that}\:\:\:\:\:\:\:\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} \leqslant\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}×\int_{\mathrm{a}} ^{\mathrm{b}} \:\frac{\mathrm{dx}}{\mathrm{f}\left(\mathrm{x}\right)}\leqslant\frac{\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} }{\mathrm{4}}\frac{\left(\mathrm{m}+\mathrm{M}\right)^{\mathrm{2}} }{\mathrm{mM}}\right. \\ $$
Question Number 107245 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\clubsuit\:\mathscr{Q}{uestion}\clubsuit \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{W}{hy}\:??? \\ $$$$....\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\left(\mathrm{2}^{{x}} −\mathrm{1}\right){sin}^{\mathrm{3}} \left({x}\right)}{\left(\mathrm{2}^{{x}} +\mathrm{1}\right)\left({sin}^{\mathrm{3}} \left({x}\right)+{cos}^{\mathrm{3}} \left({x}\right)\right)}\:}<\frac{\pi}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:....\mathscr{M}.\mathscr{N}.... \\ $$
Question Number 107212 Answers: 4 Comments: 0
$$\:\:\:\circledcirc{bemath}\circledcirc \\ $$$$\int\:{x}^{\mathrm{6}} \:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\:? \\ $$
Question Number 107238 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:\boxplus{bemath}\boxplus \\ $$$$\int\:\frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:^{\mathrm{3}} {x}+\mathrm{cos}\:^{\mathrm{3}} {x}}\:{dx}\:?\: \\ $$
Question Number 107197 Answers: 0 Comments: 0
$$\:\:\:\:\:\trianglerighteq\mathrm{JS}\trianglelefteq \\ $$$$\int\overset{\:\pi/\mathrm{6}} {\:}_{\mathrm{0}} \mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{6x}\right)\:\mathrm{cos}\:^{\mathrm{4}} \left(\mathrm{3x}\right)\:\mathrm{dx}\:? \\ $$$$\left[\:\mathrm{by}\:\mathrm{using}\:\mathrm{the}\:\mathcal{G}\mathrm{amma}\:\mathrm{function}\:\right] \\ $$
Question Number 107193 Answers: 1 Comments: 0
$$\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\:\frac{\mathrm{ln}\:\mathrm{x}}{\sqrt{\mathrm{4x}−\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:? \\ $$
Question Number 107184 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:@{bemath}@ \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:{x}\:\sqrt[{\mathrm{3}}]{\mathrm{8}−{x}^{\mathrm{3}} }\:{dx}\:=?\: \\ $$
Question Number 107162 Answers: 1 Comments: 1
Question Number 107141 Answers: 0 Comments: 0
$$\int\left({x}^{\mathrm{3}} +{x}^{\mathrm{6}} \right)\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{2}}\right){dx} \\ $$
Question Number 107113 Answers: 0 Comments: 0
Question Number 107107 Answers: 1 Comments: 2
Question Number 107036 Answers: 2 Comments: 1
$$\int\:\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} }\:? \\ $$
Question Number 107002 Answers: 3 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{cosx}}{\sqrt{\mathrm{2}−\mathrm{sin}^{\mathrm{2}} \mathrm{x}}}\mathrm{dx} \\ $$
Question Number 106964 Answers: 5 Comments: 4
$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{sec}^{\mathrm{2}} \mathrm{x}}{\sqrt{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \mathrm{x}}}\mathrm{dx} \\ $$
Question Number 106948 Answers: 4 Comments: 0
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{dx}}{\mathrm{a}+\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\:\mathrm{with}\:\mathrm{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{explicite}\:\mathrm{f}\left(\mathrm{a}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{explicite}\:\mathrm{g}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\pi} \:\:\frac{\mathrm{dx}}{\left(\mathrm{a}+\mathrm{cos}^{\mathrm{2}} \mathrm{x}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:\mathrm{find}\:\mathrm{tbe}\:\mathrm{valued}\:\mathrm{of}\:\mathrm{intevrsls} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\:\mathrm{and}\:\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \mathrm{x}\right)^{\mathrm{2}} } \\ $$
Question Number 107051 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{cosx}}{\mathrm{2}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx} \\ $$
Question Number 106932 Answers: 3 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{x}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\mathrm{dx} \\ $$
Pg 149 Pg 150 Pg 151 Pg 152 Pg 153 Pg 154 Pg 155 Pg 156 Pg 157 Pg 158
Terms of Service
Privacy Policy
Contact: info@tinkutara.com