Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 151

Question Number 100368    Answers: 1   Comments: 0

lim_(n→∞) ∫_(−∞) ^∞ cos (x^n ) dx =? where n=2k, k∈N, k≠0

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\int_{−\infty} ^{\infty} \mathrm{cos}\:\left({x}^{{n}} \right)\:{dx}\:=? \\ $$$${where}\:{n}=\mathrm{2}{k},\:{k}\in\mathbb{N},\:{k}\neq\mathrm{0} \\ $$

Question Number 100216    Answers: 1   Comments: 2

if I = ∫_0 ^(π/2) ((sin x)/(sin x + cos x))dx = ∫_0 ^(π/2) ((cos x)/(sin x +cos x))dx then I = ??

$$\mathrm{if}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x}}{dx}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}}{dx}\: \\ $$$$\mathrm{then}\:{I}\:=\:?? \\ $$

Question Number 100215    Answers: 2   Comments: 1

evaluate lim_(n→∞) ∫_1 ^e x^n ln x dx

$$\mathrm{evaluate}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{1}} ^{{e}} {x}^{{n}} \mathrm{ln}\:{x}\:{dx}\: \\ $$

Question Number 100207    Answers: 0   Comments: 2

Given an even fuction f(x) such that ∫_(−a) ^a f(x)dx = (√a) ∀a ≥0 find ∫_3 ^4 f(x) dx

$$\mathrm{Given}\:\mathrm{an}\:\mathrm{even}\:\mathrm{fuction}\:{f}\left({x}\right)\:\mathrm{such}\:\mathrm{that}\:\overset{{a}} {\int}_{−{a}} \:{f}\left({x}\right){dx}\:=\:\sqrt{{a}}\:\forall{a}\:\geqslant\mathrm{0} \\ $$$$\mathrm{find}\:\int_{\mathrm{3}} ^{\mathrm{4}} {f}\left({x}\right)\:{dx} \\ $$$$ \\ $$

Question Number 100191    Answers: 1   Comments: 1

∫ x^2 e^x dx ?

$$\int\:{x}^{\mathrm{2}} \:{e}^{{x}} \:{dx}\:? \\ $$

Question Number 100190    Answers: 0   Comments: 0

∫_0 ^1 ((x^x /((1−x)^(1−x) ))−(((1−x)^(1−x) )/x^x ))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{{x}^{{x}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{1}−{x}} }−\frac{\left(\mathrm{1}−{x}\right)^{\mathrm{1}−{x}} }{{x}^{{x}} }\right){dx} \\ $$

Question Number 100189    Answers: 1   Comments: 0

∫tan^i xdx

$$\int{tan}^{{i}} {xdx} \\ $$

Question Number 100114    Answers: 1   Comments: 0

Question Number 100089    Answers: 0   Comments: 0

calculate A_n =∫_0 ^(π/2) ((sin^n (x))/(sin(nx)))dx

$$\:\mathrm{calculate}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{sin}^{\mathrm{n}} \left(\mathrm{x}\right)}{\mathrm{sin}\left(\mathrm{nx}\right)}\mathrm{dx}\: \\ $$

Question Number 100088    Answers: 1   Comments: 1

calculate ∫ ((cosx)/(cos(3x)))dx

$$\mathrm{calculate}\:\int\:\frac{\mathrm{cosx}}{\mathrm{cos}\left(\mathrm{3x}\right)}\mathrm{dx} \\ $$

Question Number 100054    Answers: 1   Comments: 0

I_(n,m) =∫_0 ^1 ∫_0 ^1 (((ln(x))^n (ln(y))^m )/(1−xy))dx dy

$${I}_{{n},{m}} =\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left({ln}\left({x}\right)\right)^{{n}} \left({ln}\left({y}\right)\right)^{{m}} }{\mathrm{1}−{xy}}{dx}\:{dy} \\ $$

Question Number 100047    Answers: 2   Comments: 0

∫_0 ^1 e^(−x^2 ) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$

Question Number 100026    Answers: 1   Comments: 0

∫_0 ^(π/2) e^(−sec^2 θ) dθ

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{e}^{−\mathrm{sec}^{\mathrm{2}} \theta} \mathrm{d}\theta \\ $$

Question Number 99831    Answers: 0   Comments: 0

solve the ds { ((x^′ +2y^′ =sint)),((3x^′ +y^′ =te^t )) :}

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{ds}\:\:\:\begin{cases}{\mathrm{x}^{'} \:+\mathrm{2y}^{'} \:=\mathrm{sint}}\\{\mathrm{3x}^{'} +\mathrm{y}^{'} \:=\mathrm{te}^{\mathrm{t}} }\end{cases} \\ $$

Question Number 99824    Answers: 1   Comments: 0

calculate ∫_0 ^1 xe^(−x^2 ) arctan((2/x))dx

$$\mathrm{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{arctan}\left(\frac{\mathrm{2}}{\mathrm{x}}\right)\mathrm{dx} \\ $$

Question Number 99820    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((x^2 dx)/((x^4 −x^2 +1)^2 ))

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{dx}}{\left(\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 99818    Answers: 2   Comments: 0

∫_0 ^1 ln(1+(1/(n^2 x^2 )))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }\right)\mathrm{dx} \\ $$

Question Number 99779    Answers: 1   Comments: 2

Question Number 99707    Answers: 4   Comments: 1

∫_(−∞) ^∞ e^(−x^2 ) dx=?

$$\int_{−\infty} ^{\infty} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx}=? \\ $$

Question Number 99679    Answers: 0   Comments: 1

Question Number 99578    Answers: 2   Comments: 0

1)calculate U_n =∫_0 ^∞ e^(−nx^4 ) dx and determine lim_(n→+∞) n^4 U_n 2) find nature of the serie Σ U_n

$$\left.\mathrm{1}\right)\mathrm{calculate}\:\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{nx}^{\mathrm{4}} } \mathrm{dx}\:\:\mathrm{and}\:\mathrm{determine}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{n}^{\mathrm{4}} \:\mathrm{U}_{\mathrm{n}} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{serie}\:\Sigma\:\mathrm{U}_{\mathrm{n}} \\ $$

Question Number 99576    Answers: 2   Comments: 0

1)let f(a) =∫_0 ^∞ (( t^(a−1) ln(t))/(1+t)) dt with 0<a<1 prove that f(a)is convergent and determine it value 2)calculate∫_0 ^∞ ((lnt)/((1+t)(√t)))dt 3)calculate∫_0 ^∞ ((lnt)/((^3 (√t^2 ))(1+t)))dt

$$\left.\mathrm{1}\right)\mathrm{let}\:\mathrm{f}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\:\mathrm{t}^{\mathrm{a}−\mathrm{1}} \mathrm{ln}\left(\mathrm{t}\right)}{\mathrm{1}+\mathrm{t}}\:\mathrm{dt}\:\:\:\mathrm{with}\:\mathrm{0}<\mathrm{a}<\mathrm{1}\:\:\:\mathrm{prove}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{a}\right)\mathrm{is}\:\mathrm{convergent}\:\mathrm{and}\:\mathrm{determine} \\ $$$$\mathrm{it}\:\mathrm{value} \\ $$$$\left.\mathrm{2}\right)\mathrm{calculate}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnt}}{\left(\mathrm{1}+\mathrm{t}\right)\sqrt{\mathrm{t}}}\mathrm{dt} \\ $$$$\left.\mathrm{3}\right)\mathrm{calculate}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnt}}{\left(^{\mathrm{3}} \sqrt{\mathrm{t}^{\mathrm{2}} }\right)\left(\mathrm{1}+\mathrm{t}\right)}\mathrm{dt} \\ $$

Question Number 99557    Answers: 1   Comments: 0

Λ=∫_0 ^1 (Li_2 ((1/(1+x)))+Li_3 ((x/(1+x)))+Li_4 (((x+1)/(x^2 +x+1))))dx Li_n (z)=polylogarithm function. by adeyemi.

$$ \\ $$$$\Lambda=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}}\right)+\mathrm{Li}_{\mathrm{3}} \left(\frac{\mathrm{x}}{\mathrm{1}+\mathrm{x}}\right)+\mathrm{Li}_{\mathrm{4}} \left(\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\right)\right)\mathrm{dx} \\ $$$$\mathrm{Li}_{\mathrm{n}} \left(\mathrm{z}\right)=\mathrm{polylogarithm}\:\mathrm{function}. \\ $$$$\mathrm{by}\:\mathrm{adeyemi}. \\ $$$$ \\ $$

Question Number 99541    Answers: 3   Comments: 0

∫_(−∞) ^∞ e^(−2x^2 −5x−3) dx=? help me

$$\int_{−\infty} ^{\infty} \mathrm{e}^{−\mathrm{2x}^{\mathrm{2}} −\mathrm{5x}−\mathrm{3}} \mathrm{dx}=?\: \\ $$$$\mathrm{help}\:\mathrm{me} \\ $$

Question Number 99536    Answers: 0   Comments: 0

∫tan^(πi) xdx

$$\int{tan}^{\pi{i}} {xdx} \\ $$

Question Number 99516    Answers: 1   Comments: 0

  Pg 146      Pg 147      Pg 148      Pg 149      Pg 150      Pg 151      Pg 152      Pg 153      Pg 154      Pg 155   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com