Question and Answers Forum
All Questions Topic List
IntegrationQuestion and Answers: Page 151
Question Number 100368 Answers: 1 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\int_{−\infty} ^{\infty} \mathrm{cos}\:\left({x}^{{n}} \right)\:{dx}\:=? \\ $$$${where}\:{n}=\mathrm{2}{k},\:{k}\in\mathbb{N},\:{k}\neq\mathrm{0} \\ $$
Question Number 100216 Answers: 1 Comments: 2
$$\mathrm{if}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x}}{dx}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}}{dx}\: \\ $$$$\mathrm{then}\:{I}\:=\:?? \\ $$
Question Number 100215 Answers: 2 Comments: 1
$$\mathrm{evaluate}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{1}} ^{{e}} {x}^{{n}} \mathrm{ln}\:{x}\:{dx}\: \\ $$
Question Number 100207 Answers: 0 Comments: 2
$$\mathrm{Given}\:\mathrm{an}\:\mathrm{even}\:\mathrm{fuction}\:{f}\left({x}\right)\:\mathrm{such}\:\mathrm{that}\:\overset{{a}} {\int}_{−{a}} \:{f}\left({x}\right){dx}\:=\:\sqrt{{a}}\:\forall{a}\:\geqslant\mathrm{0} \\ $$$$\mathrm{find}\:\int_{\mathrm{3}} ^{\mathrm{4}} {f}\left({x}\right)\:{dx} \\ $$$$ \\ $$
Question Number 100191 Answers: 1 Comments: 1
$$\int\:{x}^{\mathrm{2}} \:{e}^{{x}} \:{dx}\:? \\ $$
Question Number 100190 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{{x}^{{x}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{1}−{x}} }−\frac{\left(\mathrm{1}−{x}\right)^{\mathrm{1}−{x}} }{{x}^{{x}} }\right){dx} \\ $$
Question Number 100189 Answers: 1 Comments: 0
$$\int{tan}^{{i}} {xdx} \\ $$
Question Number 100114 Answers: 1 Comments: 0
Question Number 100089 Answers: 0 Comments: 0
$$\:\mathrm{calculate}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{sin}^{\mathrm{n}} \left(\mathrm{x}\right)}{\mathrm{sin}\left(\mathrm{nx}\right)}\mathrm{dx}\: \\ $$
Question Number 100088 Answers: 1 Comments: 1
$$\mathrm{calculate}\:\int\:\frac{\mathrm{cosx}}{\mathrm{cos}\left(\mathrm{3x}\right)}\mathrm{dx} \\ $$
Question Number 100054 Answers: 1 Comments: 0
$${I}_{{n},{m}} =\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left({ln}\left({x}\right)\right)^{{n}} \left({ln}\left({y}\right)\right)^{{m}} }{\mathrm{1}−{xy}}{dx}\:{dy} \\ $$
Question Number 100047 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$
Question Number 100026 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{e}^{−\mathrm{sec}^{\mathrm{2}} \theta} \mathrm{d}\theta \\ $$
Question Number 99831 Answers: 0 Comments: 0
$$\mathrm{solve}\:\mathrm{the}\:\mathrm{ds}\:\:\:\begin{cases}{\mathrm{x}^{'} \:+\mathrm{2y}^{'} \:=\mathrm{sint}}\\{\mathrm{3x}^{'} +\mathrm{y}^{'} \:=\mathrm{te}^{\mathrm{t}} }\end{cases} \\ $$
Question Number 99824 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{arctan}\left(\frac{\mathrm{2}}{\mathrm{x}}\right)\mathrm{dx} \\ $$
Question Number 99820 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{dx}}{\left(\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 99818 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }\right)\mathrm{dx} \\ $$
Question Number 99779 Answers: 1 Comments: 2
Question Number 99707 Answers: 4 Comments: 1
$$\int_{−\infty} ^{\infty} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx}=? \\ $$
Question Number 99679 Answers: 0 Comments: 1
Question Number 99578 Answers: 2 Comments: 0
$$\left.\mathrm{1}\right)\mathrm{calculate}\:\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{nx}^{\mathrm{4}} } \mathrm{dx}\:\:\mathrm{and}\:\mathrm{determine}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{n}^{\mathrm{4}} \:\mathrm{U}_{\mathrm{n}} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{serie}\:\Sigma\:\mathrm{U}_{\mathrm{n}} \\ $$
Question Number 99576 Answers: 2 Comments: 0
$$\left.\mathrm{1}\right)\mathrm{let}\:\mathrm{f}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\:\mathrm{t}^{\mathrm{a}−\mathrm{1}} \mathrm{ln}\left(\mathrm{t}\right)}{\mathrm{1}+\mathrm{t}}\:\mathrm{dt}\:\:\:\mathrm{with}\:\mathrm{0}<\mathrm{a}<\mathrm{1}\:\:\:\mathrm{prove}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{a}\right)\mathrm{is}\:\mathrm{convergent}\:\mathrm{and}\:\mathrm{determine} \\ $$$$\mathrm{it}\:\mathrm{value} \\ $$$$\left.\mathrm{2}\right)\mathrm{calculate}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnt}}{\left(\mathrm{1}+\mathrm{t}\right)\sqrt{\mathrm{t}}}\mathrm{dt} \\ $$$$\left.\mathrm{3}\right)\mathrm{calculate}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnt}}{\left(^{\mathrm{3}} \sqrt{\mathrm{t}^{\mathrm{2}} }\right)\left(\mathrm{1}+\mathrm{t}\right)}\mathrm{dt} \\ $$
Question Number 99557 Answers: 1 Comments: 0
$$ \\ $$$$\Lambda=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}}\right)+\mathrm{Li}_{\mathrm{3}} \left(\frac{\mathrm{x}}{\mathrm{1}+\mathrm{x}}\right)+\mathrm{Li}_{\mathrm{4}} \left(\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\right)\right)\mathrm{dx} \\ $$$$\mathrm{Li}_{\mathrm{n}} \left(\mathrm{z}\right)=\mathrm{polylogarithm}\:\mathrm{function}. \\ $$$$\mathrm{by}\:\mathrm{adeyemi}. \\ $$$$ \\ $$
Question Number 99541 Answers: 3 Comments: 0
$$\int_{−\infty} ^{\infty} \mathrm{e}^{−\mathrm{2x}^{\mathrm{2}} −\mathrm{5x}−\mathrm{3}} \mathrm{dx}=?\: \\ $$$$\mathrm{help}\:\mathrm{me} \\ $$
Question Number 99536 Answers: 0 Comments: 0
$$\int{tan}^{\pi{i}} {xdx} \\ $$
Question Number 99516 Answers: 1 Comments: 0
Pg 146 Pg 147 Pg 148 Pg 149 Pg 150 Pg 151 Pg 152 Pg 153 Pg 154 Pg 155
Terms of Service
Privacy Policy
Contact: info@tinkutara.com