Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 150

Question Number 109214    Answers: 1   Comments: 0

calculateA_n = ∫_0 ^∞ (dx/((x^2 +n)(x^2 +2n))) with n integr natural≥1

$$\mathrm{calculateA}_{\mathrm{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{n}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{2n}\right)}\:\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{natural}\geqslant\mathrm{1} \\ $$

Question Number 109212    Answers: 0   Comments: 0

calculate ∫_0 ^π ((sin(nx))/(cosx))dx with n integr

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{sin}\left(\mathrm{nx}\right)}{\mathrm{cosx}}\mathrm{dx}\:\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr} \\ $$

Question Number 109136    Answers: 1   Comments: 0

∫_0 ^(1/2) ((ln(1-t)ln(t))/t) dt I′m about to give up

$$\int_{\mathrm{0}} ^{\mathrm{1}/\mathrm{2}} \frac{{ln}\left(\mathrm{1}-{t}\right){ln}\left({t}\right)}{{t}}\:{dt} \\ $$$${I}'{m}\:{about}\:{to}\:{give}\:{up} \\ $$

Question Number 109129    Answers: 1   Comments: 0

∫_0 ^(π/2) ((ln (cos x)ln (sin x))/(tan x)) dx

$$\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{ln}\:\left(\mathrm{cos}\:{x}\right)\mathrm{ln}\:\left(\mathrm{sin}\:{x}\right)}{\mathrm{tan}\:{x}}\:{dx} \\ $$

Question Number 109101    Answers: 3   Comments: 0

Given a function f(x+3)=f(x) for ∀x∈R. If ∫_(−3) ^6 f(x)dx = −6 then ∫_3 ^9 f(x) dx = ?

$$\:{Given}\:{a}\:{function}\:{f}\left({x}+\mathrm{3}\right)={f}\left({x}\right) \\ $$$${for}\:\forall{x}\in\mathbb{R}.\:{If}\:\underset{−\mathrm{3}} {\overset{\mathrm{6}} {\int}}{f}\left({x}\right){dx}\:=\:−\mathrm{6}\: \\ $$$${then}\:\underset{\mathrm{3}} {\overset{\mathrm{9}} {\int}}{f}\left({x}\right)\:{dx}\:=\:? \\ $$

Question Number 109097    Answers: 1   Comments: 0

((♭o♭hans)/(∼∼∼∼∼)) ∫_1 ^2 x sec^(−1) (x)dx=?

$$\:\:\frac{\boldsymbol{\flat{o}\flat{hans}}}{\sim\sim\sim\sim\sim} \\ $$$$\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}{x}\:\mathrm{sec}^{−\mathrm{1}} \left({x}\right){dx}=? \\ $$

Question Number 109086    Answers: 1   Comments: 0

♭_→ o_→ ♭h_⊸ ans_⊸ (1) (x^2 e^(−(y/x)) +y^2 ) dx = xy dy (2)(((f(x))/x))′ = x^2 e^(−x^2 ) ; f(1) = (1/e) g(x) = (4/e^4 )∫_1 ^x e^t^2 f(t) dt . find f(2)−g(2)

$$\:\:\:\underset{\rightarrow} {\flat}\underset{\rightarrow} {{o}}\flat\underset{\multimap} {{h}an}\underset{\multimap} {{s}} \\ $$$$\left(\mathrm{1}\right)\:\left({x}^{\mathrm{2}} {e}^{−\frac{{y}}{{x}}} +{y}^{\mathrm{2}} \right)\:{dx}\:=\:{xy}\:{dy}\: \\ $$$$\left(\mathrm{2}\right)\left(\frac{{f}\left({x}\right)}{{x}}\right)'\:=\:{x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{2}} } \:;\:{f}\left(\mathrm{1}\right)\:=\:\frac{\mathrm{1}}{{e}}\: \\ $$$$\:\:\:\:\:\:\:{g}\left({x}\right)\:=\:\frac{\mathrm{4}}{{e}^{\mathrm{4}} }\underset{\mathrm{1}} {\overset{{x}} {\int}}{e}^{{t}^{\mathrm{2}} } \:{f}\left({t}\right)\:{dt}\:.\:{find}\:{f}\left(\mathrm{2}\right)−{g}\left(\mathrm{2}\right) \\ $$

Question Number 109047    Answers: 1   Comments: 0

∫_(−2) ^∞ (x+2)^5 e^(−(x+2)) dx ∫_0 ^1 ((tan(x))/x)dx

$$\int_{−\mathrm{2}} ^{\infty} \left({x}+\mathrm{2}\right)^{\mathrm{5}} {e}^{−\left({x}+\mathrm{2}\right)} {dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tan}\left({x}\right)}{{x}}{dx} \\ $$

Question Number 108998    Answers: 0   Comments: 0

Question Number 108990    Answers: 2   Comments: 0

Question Number 108921    Answers: 3   Comments: 0

a. ∫((sin^3 4x)/(cos^8 4x))dx b. ∫_(−(π/2)) ^(π/2) (x^2 e^(cosx) −2x)sinxdx

$$\mathrm{a}.\:\:\int\frac{\mathrm{sin}^{\mathrm{3}} \mathrm{4x}}{\mathrm{cos}^{\mathrm{8}} \mathrm{4x}}\mathrm{dx} \\ $$$$\mathrm{b}.\:\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{x}^{\mathrm{2}} \mathrm{e}^{\mathrm{cosx}} −\mathrm{2x}\right)\mathrm{sinxdx} \\ $$

Question Number 108908    Answers: 0   Comments: 0

Question Number 108954    Answers: 1   Comments: 5

Evaluate : Ω=∫_0 ^( 1) ∫_0 ^( 1) (1/(2−x^2 − y^2 )) dxdy=??? ★★♣♣★★

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathscr{E}{valuate}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}−{x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} }\:{dxdy}=???\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bigstar\bigstar\clubsuit\clubsuit\bigstar\bigstar \\ $$$$ \\ $$

Question Number 108893    Answers: 6   Comments: 0

(1)∫ (x^4 /(1−x^2 )) dx (2)∫_(−3) ^5 (√(∣x∣^3 )) dx (3) ∫_0 ^(π^2 /4) sin (√x) dx (4) ∫_(−∞) ^∞ e^(−2x^2 −5x−3) dx (5) x^3 y′′′−2x^2 y′′−2xy′+8y=0 (6)(x^4 +y^4 )dx+2x^3 y dy = 0 (7) (2(√(xy))−y)dx−xdy = 0

$$\left(\mathrm{1}\right)\int\:\frac{{x}^{\mathrm{4}} }{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\: \\ $$$$\left(\mathrm{2}\right)\underset{−\mathrm{3}} {\overset{\mathrm{5}} {\int}}\sqrt{\mid{x}\mid^{\mathrm{3}} }\:{dx}\: \\ $$$$\left(\mathrm{3}\right)\:\underset{\mathrm{0}} {\overset{\frac{\pi^{\mathrm{2}} }{\mathrm{4}}} {\int}}\:\mathrm{sin}\:\sqrt{{x}}\:{dx}\: \\ $$$$\left(\mathrm{4}\right)\:\underset{−\infty} {\overset{\infty} {\int}}{e}^{−\mathrm{2}{x}^{\mathrm{2}} −\mathrm{5}{x}−\mathrm{3}} \:{dx}\: \\ $$$$\left(\mathrm{5}\right)\:{x}^{\mathrm{3}} {y}'''−\mathrm{2}{x}^{\mathrm{2}} {y}''−\mathrm{2}{xy}'+\mathrm{8}{y}=\mathrm{0} \\ $$$$\left(\mathrm{6}\right)\left({x}^{\mathrm{4}} +{y}^{\mathrm{4}} \right){dx}+\mathrm{2}{x}^{\mathrm{3}} {y}\:{dy}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{7}\right)\:\left(\mathrm{2}\sqrt{{xy}}−{y}\right){dx}−{xdy}\:=\:\mathrm{0} \\ $$

Question Number 108891    Answers: 1   Comments: 0

((bobHans)/∦) ∫ (((x^2 −2) dx)/((x^4 +5x^2 +4) arc tan (((x^2 +2)/x))))

$$\:\:\:\frac{\boldsymbol{{bob}}\mathbb{H}{ans}}{\nparallel} \\ $$$$\int\:\frac{\left({x}^{\mathrm{2}} −\mathrm{2}\right)\:{dx}}{\left({x}^{\mathrm{4}} +\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}\right)\:\mathrm{arc}\:\mathrm{tan}\:\left(\frac{{x}^{\mathrm{2}} +\mathrm{2}}{{x}}\right)} \\ $$

Question Number 108841    Answers: 1   Comments: 0

Question Number 108839    Answers: 0   Comments: 1

Question Number 108838    Answers: 0   Comments: 0

Question Number 108821    Answers: 1   Comments: 0

find ∫_0 ^∞ ((lnx)/((x^2 +1)^2 ))dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 108789    Answers: 1   Comments: 0

Question Number 108786    Answers: 1   Comments: 0

Question Number 108761    Answers: 2   Comments: 0

((⋮((Be)/(Math))⋮)/★) If ∫_(−1) ^( a) ((x+1)/((x+2)^4 )) = ((10)/(81)) , then the value of a−2 is ___

$$\:\:\:\frac{\vdots\frac{\mathcal{B}{e}}{\mathcal{M}{ath}}\vdots}{\bigstar} \\ $$$${If}\:\int_{−\mathrm{1}} ^{\:\:{a}} \:\frac{{x}+\mathrm{1}}{\left({x}+\mathrm{2}\right)^{\mathrm{4}} }\:=\:\frac{\mathrm{10}}{\mathrm{81}}\:,\:{then}\:{the}\:{value}\:{of} \\ $$$${a}−\mathrm{2}\:{is}\:\_\_\_ \\ $$

Question Number 108750    Answers: 2   Comments: 0

calculste ∫_0 ^∞ ((ln(x))/(x^2 −x+1))dx

$$\mathrm{calculste}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$

Question Number 108749    Answers: 2   Comments: 0

calculste ∫_0 ^∞ ((ln(x))/((1+x)^4 )) dx

$$\mathrm{calculste}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{4}} }\:\mathrm{dx} \\ $$

Question Number 108748    Answers: 1   Comments: 0

Question Number 108738    Answers: 0   Comments: 0

please: ^∗ prove^∗ :::: 1.^(important) lim_(z→1) (ζ (z) −(1/(z−1)) )= γ (euler constant) 2. ^(important) ∫_0 ^( ∞) (cos(x)−(1/(1+x^2 )))(dx/x) =− γ .....M.N.....

$$\:\:\:\:\:\:\:\:{please}:\:\:\:\:\:^{\ast} \mathrm{prove}^{\ast} :::: \\ $$$$\:\:\:\:\:\mathrm{1}.^{\mathrm{important}} \:\:\:\:\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{1}} \left(\zeta\:\left(\mathrm{z}\right)\:−\frac{\mathrm{1}}{\mathrm{z}−\mathrm{1}}\:\right)=\:\gamma\:\:\:\left(\mathrm{euler}\:\mathrm{constant}\right) \\ $$$$\:\:\:\:\mathrm{2}.\:\overset{\mathrm{important}} {\:}\:\:\int_{\mathrm{0}} ^{\:\infty} \left(\mathrm{cos}\left(\mathrm{x}\right)−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\frac{\mathrm{dx}}{\mathrm{x}}\:=−\:\gamma \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\mathscr{M}.\mathscr{N}..... \\ $$$$\: \\ $$

  Pg 145      Pg 146      Pg 147      Pg 148      Pg 149      Pg 150      Pg 151      Pg 152      Pg 153      Pg 154   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com